Telechelic star polymers

Samples: DDN

Consiglia

- Network 1- Self assembled TSP (**PS**_{26k}**PI**_{27k})
- Network 2- Linear PI (Mw=280K)
- Solvent Phenyldodecane

Samples investigated:

	Concentration TSP [g/g]	Concentration PI [g/g]	Ne (PI)	Quantity
Double I	33%	6 %	5	~40 <i>mg</i>
Double II	33%	12 %	10	~40 <i>mg</i>

The dual network can be also realized considering:

- PI with different Mw
- Different TSP concentration
- Other linear polymers as second network (such as block copolymer PS-PI)

Telechelic star polymers

Properties studied so far:

> Rheological characterization of $PS_{26k}PI_{27k}$ (effects of T , c) and of dual network :

- Dynamic of the systems
- Phase diagram
- Non linear properties
- SAXS : structure determination

Interesting to do:

70

60

- Extensional rheology:
 - Influence of the phase on TSP properties
 - Role of linear chains on the non linear behavior of the dual network (TSP+PI)
- Studying the impact of a drop?

Consiglia

solid (NEW)

liquid (NEW)

Ь

Network with pendant groups at x-linking points

Samples:

Emmanouela

Network with pendant groups at x-linking points

Network with pendant groups at x-linking points

Open questions:

Emmanouela

- I. Understand the broad glass transition via dielectric spectroscopy and modulated DSC
- 2. Prevent loss of mechanical properties due to humidity

Also vary n. Crystallization?

e- energy loss spectroscopy (EELS) TEM Raman: fluorescence vs resonance Raman, 785nm excitation vs 514nm excitation.

4. Remove Si-(CH₃)₃ protecting group "contaminant"

5. Study stress-relaxation mechanisms beyond yield point

Network ABA triblock

Samples:

PS **PS total** Mn Tg m Name D length content (°C) (kg/mol) (g) (kg/mol) (%) PS9,5k-co-PnBA82k-co-100 16 2,5g -45 19 1,48 PS9,5k PS9,5k-co-PnBA130k-co-5,6g 145 1,53 -45 19 13 PS9,5k PS9,5k-co-PnBA150k-co-165 3,9g -45 11 1,56 19 PS9,5k

PS12,5k-co-PnBA62k-co- PS12,5k	87	1,45	~1,6 g	~20	25	29
PS12,5k-co-PnBA35k-co- PS12,5k	60	1,45	1,5g	1:-45 2:80	25	42

Clément

Network ABA triblock

