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Objectives
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Identify the relevant dissipation involved in the sheet expansion 
dynamics on a repellent surface and on targets. 

Rationalize the respective roles of inertia, capillarity, elasticity and 
dissipation on the impact process. 

Study the elasto-capillary effects on the mechanical deformation by 
impacting droplets of transient networks.



Upon impact : 

Inertial forces radial expansion of the sheet

Stored elastic energy retraction after maximal expansion

Goal:

- Rationalize the respective role of 

3

Deceleration 300x

5 mm 5 mm

Inertia
Bulk 

elasticity

Surface 
elasticity

Dissipation

Context – Drop impact
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Drop impact Part 1 – repellent surface
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Microemulsions reversibly linked 
by telechelic polymers, 

Cn -(PEO)35k- Cn (n = 12, 14, 18)

radius=6nm

r = number of stickers per droplet 
Φ = mass fraction of droplet

Impact of Beads and Drops on a Repellent Solid Surface: A Unified Description, 
S. Arora, J.-M. Fromental, S. Mora, Ty Phou, L. Ramos, and C. Ligoure

Phys. Rev. Lett., 2018

Drop impact Part 1 -Viscoelastic Samples

Φ = mass fraction of surfactant
α = mole fraction of amphiphilic polymer (PEO)

Adapted from Schubert, B.A., The rheology and microstructure of 
charged, wormlike micelles. Ph.D. Thesis, 2003, University of 

Delaware, Newark.

v

PEO

Decorated wormlike micelles



Drop impact Part 1 -Viscoelastic Samples
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Drop impact Part 1 – repellent surface

Glycerol-Water   𝜂0 = 1 to 813 mPas
Silicone oil 𝜂0 = 5 to 970 mPas



8

Kinetic energy

At all time

Drop impact Part 1 – Energy balance

h
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Surface elastic energy

Drop impact Part 1 – Energy balance
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Bulk elastic energy

for a neo-Hookean solid with a cylinder shape 
of homogenous thickness and for d>>d0

d

Drop impact Part 1 – Energy balance
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"Biaxial extensional viscous dissipation in sheets expansion formed by impact of drops of Newtonian and non-Newtonian fluids"

A. Louhichi, C-A. Charles, T. Phou, D. Vlassopoulos, L. Ramos, and C. Ligoure, 2020, Physical Review Fluids (Vol. 5, No. 5)

Biaxial dissipation

Dissipation function

Drop impact Part 1 – Energy balance

For Newtonian fluids :

drop
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Estimation of the strain rate:
ҧሶ𝜀 ≈ 500𝑠−1

Drop impact Part 1 – Energy balance
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Second order nonlinear ordinary 
differential equation 

Numerical resolution

Drop impact Part 1 – Equation of motion
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Numerical resolution
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Drop impact Part 1 –
Underdamped Harmonic Oscillator



15

Conclusions Part 1

✓ Successful building of a set-up allowing one to eliminate the viscous shear dissipation.

✓ Impact of samples with viscoelastic properties and evidence of a nontrivial combination of 
viscosity, bulk and surface elasticity. 

✓ Interpretation of the experimental results by modeling the drop impact dynamic by a free 
harmonic oscillator subjected to biaxial dissipations that depends on the expansion. 
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Target diameter=6.5mm

A. Louhichi, S. Arora, C. A. Charles, L. Bouteiller, 
D. Vlassopoulos, L. Ramos, C. Ligoure

“Drop impact experiments on a small target: a tool to 
quantify the competition between shear and biaxial 

extensional viscous dissipation in the expansion 
dynamics of Newtonian and non-Newtonian liquid 

sheets” submitted to J. Fluid mech.

For Newtonian fluids, shear dissipation 
dominates with a dependence with the target size, dt.

What happens
when we change 

the size of the 
target?

Drop impact Part 2 – Impact on target
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dmax

d0

h

Effect of the target 
diameter on shear dissipation?

dT = 5 mm Slowed down 200x

30 mm 
25mm20mm13mm 17mm11mm9mm7mm6mm5mm

Drop impact Part 2 – Targets of different sizes
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6.5mm Movie duration 18ms
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Drop impact Part 2 – Viscous fluids
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6.5mm Movie duration 18msThe whole thickness, h(t) 
or the viscous boundary layer, 𝛿(t) ?

with

What part of the sheet is actually sheared ?

Drop impact Part 2 – Shear dissipation

𝛿h
v



20

Movie duration 18ms
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Drop impact Part 2 – Shear dissipation
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6.5mm Movie duration 18ms

Negligible

Drop impact Part 2 – Shear dissipation
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6.5mm Movie duration 18ms

For Newtonian fluids :

Reynolds number :

Drop impact Part 2 – Biaxial viscosity vs Shear



Dissipation dominated by 
shear for Newtonian fluids
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Drop impact Part 2 – Biaxial viscosity vs Shear



Inviscid fluid :Viscous fluid :

Reynolds number :
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Drop impact Part 2 – Targets
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Drop impact Part 2 – Targets
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Drop impact Part 2 – Targets

2 regimes
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Slope = -1.5
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Drop impact Part 2 – Targets

Good predictions for lower viscosities

2 regimes
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Slope = -1.5

2 regimes

For high viscosities, we have an 
unexpected plateau
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Drop impact Part 2 – Targets

Good predictions for lower viscosities



Conclusions Part 2

✓ Progressive introduction of shear dissipation with targets of different 
diameters.

✓ Accounting of the effect of the target diameter on shear dissipation during 
Newtonian sheet expansion for low viscosity Newtonian fluids.

✓ Identification of two regimes for the expansion on targets. 

✓The expansion of shear thinning fluids (PEO solutions) does not change 
with the target size. 
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What is next ?

✓ Analyze of the evolution of the rim with time for different viscosities on 
liquid nitrogen and targets.

✓ Impact of saliva droplets on targets (preliminary experiments).

✓Manuscript writing.
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