

Impact of drops on a repellent surface and targets of various diameters

Carole-Ann Charles

IOC

Supervisors: Christian Ligoure Laurence Ramos

Objectives

Identify the **relevant dissipation** involved in the sheet expansion dynamics on a **repellent surface** and on **targets**.

 \bigcirc

Rationalize the respective roles of inertia, capillarity, elasticity and dissipation on the impact process.

• Study the **elasto-capillary** effects on the mechanical deformation by impacting droplets of transient networks.

Context – Drop impact

Deceleration 300x

<u>Upon impact :</u>

Inertial forces radial expansion of the sheet

Stored elastic energy retraction after maximal expansion **Goal:**

- Rationalize the respective role of

Drop impact Part 1 – repellent surface

Drop impact Part 1 -Viscoelastic Samples

Microemulsions reversibly linked by telechelic polymers, $C_n - (PEO)_{35k} - C_n (n = 12, 14, 18)$

Decorated wormlike micelles

r = number of stickers per droplet $\Phi =$ mass fraction of droplet

Impact of Beads and Drops on a Repellent Solid Surface: A Unified Description, S. Arora, J.-M. Fromental, S. Mora, Ty Phou, L. Ramos, and C. Ligoure Phys. Rev. Lett., 2018 Φ = mass fraction of surfactant α = mole fraction of amphiphilic polymer (PEO)

Adapted from Schubert, B.A., The rheology and microstructure of charged, wormlike micelles. Ph.D. Thesis, 2003, University of Delaware, Newark. 5

Drop impact Part 1 -Viscoelastic Samples

Micro-emulsions					Wormlike micelles				
Name	G_0 [Pa]	$\tau \; [ms]$	η_0 [Pas]	De	Name	G_0 [Pa]	$\tau [ms]$	η_0 [Pas]	De
$M18\phi 10r4$	10	178	1.78	45	$WM\phi 5\alpha 0.24$	50	8	0.4	3.34
$M14\phi 8r9$	189	8	1.5	5.3	$WM\phi7\alpha0.9$	73	2	0.146	0.36
$M14\phi 8r8$	128	6	0.77	2	$WM\phi 9\alpha 2$	64	1	0.031	0.16
$M14\phi 10r6$	48	5	0.23	1.2	$De = \frac{\tau}{t_{\text{max}}}$				
$M14\phi 8r6$	31	4	0.12	0.9					
$M12\phi 10r8$	194	2	0.39	0.73					

Drop impact Part 1 – Energy balance Kinetic energy $E_{\rm K} + E_{\gamma} + E_{\rm Bulk} + E_{\rm B} = \operatorname{cst}$ for $d >> d_0$ At all time $v(x) = \frac{vx}{x}$ $\underbrace{\underbrace{\mathbf{v}}_{\mathbf{K}}}_{\mathbf{K}} \qquad E_{\mathbf{K}} = \int_{0}^{r} \frac{1}{2} \left(\frac{vx}{r}\right)^{2} 2\rho \pi h x dx = \frac{1}{16} m \dot{d}^{2}$ $v = \frac{1}{2} \frac{\partial d}{\partial t}$

Surface elastic energy

$$\frac{1}{16}m\dot{d}^2 + \dot{E}_{\gamma} + E_{\text{Bulk}} + E_{\text{B}} = \text{cst}$$

for $d >> d_0$

Bulk elastic energy

$$\frac{1}{16}m\dot{d}^2 + \frac{1}{2}\pi\gamma d^2 + E_{\text{Bulk}} + E_{\text{B}} = \text{cst}$$

for a **neo-Hookean solid** with a cylinder shape of **homogenous thickness** and for $d >> d_{\circ}$

"Biaxial extensional viscous dissipation in sheets expansion formed by impact of drops of Newtonian and non-Newtonian fluids" A. Louhichi, C-A. Charles, T. Phou, D. Vlassopoulos, L. Ramos, and C. Ligoure, 2020, Physical Review Fluids (Vol. 5, No. 5)

$$\frac{1}{16}m\dot{d}^2 + \frac{1}{2}\pi\gamma d^2 + \frac{V\overline{G'}}{d_0^2}d^2 + \eta_{\rm B}\pi\frac{d_0^3}{6}\int_0^{t_{\rm max}} \left(\frac{1}{d}\frac{\partial d}{\partial t}\right)^2 dt = \text{cst}$$

Drop impact Part 1 – Equation of motion

$$\frac{1}{16}m\dot{d}^2 + \frac{1}{2}\pi\gamma d^2 + \frac{VG'}{d_0^2}d^2 + \eta_{\rm B}\pi\frac{d_0^3}{6}\int_0^{t_{\rm max}} \left(\frac{1}{d}\frac{\partial d}{\partial t}\right)^2 dt = \text{cst}$$

$$\frac{1}{8}m\ddot{d} + \frac{\eta_{\rm B}\pi d_0^3}{6}\frac{1}{d^2}\dot{d} + \left(\pi\gamma + \frac{2VG'}{d_0^2}\right)d = 0 \qquad \qquad G' = G'(\bar{\varepsilon})$$
$$\eta_{\rm B} = \frac{6G''(\bar{\varepsilon})}{\bar{\varepsilon}}$$

Second order nonlinear ordinary differential equation Numerical resolution

Drop impact Part 1 – Underdamped Harmonic Oscillator

Numerical resolution

Conclusions Part 1

- ✓ Successful building of a set-up allowing one to eliminate the viscous shear dissipation.
- Impact of samples with viscoelastic properties and evidence of a nontrivial combination of viscosity, bulk and surface elasticity.
- ✓ Interpretation of the experimental results by modeling the drop impact dynamic by a free harmonic oscillator subjected to biaxial dissipations that depends on the expansion.

Drop impact Part 2 – Targets of different sizes

 $v_0 = \sqrt{2gh} = 3.7 \text{ m/s}$

diameter on shear dissipation?

Drop impact Part 2 – Viscous fluids

- Water $\eta_0 = 1$ mPas
- ☆ 95% Glycerol-Water η₀=309 mPas
- \Rightarrow 91% Glycerol-Water $\eta_0 = 268$ mPas
- ☆ 87% Glycerol-Water η₀=145 mPas
- ★ 85% Glycerol-Water $\eta_0 = 55$ mPas
- ★ 83% Glycerol-Water η_0 =47 mPas
- ★ 80% Glycerol-Water $\eta_0 = 34$ mPas
- ★ 52% Glycerol-Water $\eta_0 = 5$ mPas
- \therefore 22% Glycerol-Water $\eta_0 = 1.5$ mPas

Drop impact Part 2 – Shear dissipation

o 13

What part of the sheet is actually sheared ?

The whole thickness, h(t)or the viscous boundary layer, $\delta(t)$? [mt

Drop impact Part 2 – Shear dissipation

Drop impact Part 2 – Shear dissipation

$$E_{\rm S} \approx \pi d_{\rm T}^2 \left(\frac{v_0^8 \eta_0^2 \rho^3 d_0^3}{48} \right)^{1/5}$$

Drop impact Part 2 – Biaxial viscosity vs Shear

$$E_B \approx \eta_B \pi \frac{d_0^3}{6} \int_0^{t_{max}} \left(\frac{1}{d} \frac{d(d)}{dt}\right)^2 dt \qquad \qquad E_{\rm S}$$

$$E_{\rm S} = \int_0^{t_{\rm max}} \int_{V_{\rm Shear}} \eta_0 \dot{\gamma}^2 dV dt$$

For Newtonian fluids : $\eta_{\rm B} = 6\eta_0$

$$E_{\rm B} \approx \pi \eta_0 d_0^2 v_0$$

$$E_{\rm S} \approx \pi d_{\rm T}^2 \left(\frac{v_0^8 \eta_0^2 \rho^3 d_0^3}{48}\right)^{1/5}$$

$$\frac{E_{\rm B}}{E_{\rm S}} \approx 2Re^{-3/5} \left(\frac{d_0}{d_{\rm T}}\right)^2$$
Reynolds number :
$$Re = \frac{v_0 d_0 \rho}{\eta_0}$$

Drop impact Part 2 – Biaxial viscosity vs Shear

- Water $\eta_0 = 1$ mPas
- 📩 95% Glycerol-Water η₀=309 mPas
- \oint 91% Glycerol-Water η_0 =268 mPas
- \Rightarrow 87% Glycerol-Water $\eta_0 = 145$ mPas
- ***** 85% Glycerol-Water $\eta_0 = 55$ mPas
- ***** 83% Glycerol-Water $\eta_0 = 47$ mPas
- ★ 80% Glycerol-Water η_0 =34 mPas
- ☆ 52% Glycerol-Water η₀=5 mPas
- $\stackrel{\bullet}{}$ 22% Glycerol-Water $\eta_0 = 1.5$ mPas

 Dissipation dominated by shear for Newtonian fluids

Viscous fluid :

Inviscid fluid :

$$E_K = E_\gamma + E_S \qquad \qquad E_K = E_\gamma$$

$$\tilde{d}^2 = 1 - \alpha \left(\frac{d_{\rm T}}{d_0}\right)^2 Re^{-2/5}$$

- ☆ 95% Glycerol-Water η₀=309 mPas
- ☆ 91% Glycerol-Water η₀=268 mPas
- ☆ 87% Glycerol-Water η₀=145 mPas
- ★ 85% Glycerol-Water η_0 =55 mPas
- ★ 83% Glycerol-Water η_0 =47 mPas
- ★ 80% Glycerol-Water $\eta_0 = 34$ mPas
- ★ 52% Glycerol-Water $\eta_0 = 5$ mPas

2 regimes

- ☆ 95% Glycerol-Water η₀=309 mPas
- \Rightarrow 91% Glycerol-Water η₀=268 mPas
- ***** 87% Glycerol-Water $\eta_0 = 145$ mPas
- ***** 85% Glycerol-Water $\eta_0 = 55$ mPas
- ★ 83% Glycerol-Water η_0 =47 mPas
- ★ 80% Glycerol-Water $\eta_0 = 34$ mPas
- ★ 52% Glycerol-Water $\eta_0 = 5$ mPas

2 regimes

• Good predictions for lower viscosities

Conclusions Part 2

- Progressive introduction of shear dissipation with targets of different diameters.
- ✓ Accounting of the effect of the target diameter on shear dissipation during Newtonian sheet expansion for low viscosity Newtonian fluids.
- ✓ Identification of two regimes for the expansion on targets.
- ✓ The expansion of shear thinning fluids (PEO solutions) does not change with the target size.

What is next ?

- ✓ Analyze of the evolution of the rim with time for different viscosities on liquid nitrogen and targets.
- ✓ Impact of saliva droplets on targets (preliminary experiments).
- ✓ Manuscript writing.

Aknowledgement

Christian Ligoure

Laurence Ramos

Ty Phou

Jean-Marc Fromental

Ameur Louhichi

Thank you for your attention

