"Startup Flow of Associative and Repulsive Microgel Suspensions"

Under the supervision of Michel Cloitre

Double Dynamics Networks: Chemistry Matters

Linear Viscoelasticity

Collaboration foreseen with Dimitris Vlassopulous (high frequency rheology)

Glass-gel duality

Transients to reach steady state may be very long at low shear rate \rightarrow time-resolved startup experiments

Start-up flow from rest: mechanical history matters

Start-up flow from rest: effect of shear rate on yielding dynamics

Start-up flow: : effect of shear rate

Start-up flow: results for different concentrations

Particle dynamic simulation of jammed suspensions

$\begin{array}{ll} \mbox{Volume fraction: } 0.70 - 0.95 \\ \eta_s &: \mbox{solvent viscosity} \\ E^* &: \cong \mbox{particle Young modulus} \end{array}$

$$\vec{\mathbf{v}}_{\alpha} = \dot{\gamma} y \vec{\mathbf{e}}_{x} + \overline{\bar{\mathbf{M}}}_{\alpha} \sum_{\beta} \left[\vec{\mathbf{f}}_{\alpha\beta}^{e} + \vec{\mathbf{f}}_{\alpha\beta}^{\text{lub}} \right]$$

Periodic conditions $10^4 - 10^6$ particles

Roger Bonnecaze, Fardin Khabaz

Particle dynamic simulation of jammed suspensions

Same trends as in experiments:

- Ductile at low shear rates; static yield static at high shear rates
- Static yield strain increases with the applied shear rate
- Static yield stress increases with the applied shear rate

Start-up flow: comparison with simulations

Dynamical microstructure during yielding

Observations

- The particle distribution at steady state is asymmetric
- The static yield stress corresponds to an extra asymmetry which is released as the particles gets more compressed

SUF results based on high and low frequency modulus

Same trends as repulsive microgels:

- Ductile at low shear rates; static yield static at high shear rates
- Static yield strain increases with the applied shear rate
- Static yield stress increases with the applied shear rate

Differences

- The elastic modulus G' corresponds to the high frequency modulus
- The yielding point is shifted to significantly higher values in the case of the associative microgels: ~ 0.6 - 0.7 for the 1.5wt% XP2671 suspension and ~ 0.1 - 0.2 for the 1.5wt% XP2504 suspension

Conclusions

Startup flow of associative and repulsive microgel suspension

Thanks for your attention!