

Synthesis and dynamics of model supramolecular polymer networks

Clément Coutouly, ESR 1

Supervisors: **Prof. Charles-André Fustin Prof. Evelyne Van Ruymbeke**

10/09/2020

UCLouvain

<u>Outline</u>

Network linear PnBA-co-Ptpy

<u>Network linear PnBA-co-Ptpy</u>

Co-Monomer synthesis and RAFT polymerisation

<u>Network linear PnBA-co-Ptpy</u>

Name	Mn (kg/mol)	D	m (g)	Tg (°C)	Nb of Terpy	Shear Rheology (linear regime)
(1)PnBA- <i>co</i> -PTpy14	102	1,29	~1,1g	-46	14	 Reference sample 0,5 eq : ZnCl₂, CuCl₂ (+Dilution in PnBA-8k) 1 eq : ZnCl₂, CuCl₂ (+Dilution in PnBA-8k)
(2)PnBA- <i>co</i> -PTpy4	100	1,25	~3,3 g	-46	4	 Reference sample 0,5 eq : ZnCl₂, CuCl₂, CoCl₂ 1 eq : ZnCl₂, CuCl₂

0,5 eq is considered as the stoichiometric amount

Network linear PnBA-co-Ptpy

Rheometer procedure

Rheometer: ARES-G2 Linear regime

Dynamic Time Sweep at 130°C :

- Remove sample memory shape (due to solvent evaporation)
- Sample equilibration

Start measurement at 100°C until -20°C :

- Dynamic time sweep (~10min)
- Dynamic strain sweep (0,1 to 20%)
- Dynamic frequency sweep (strain= 3...7%)

All the Master Curves are built with **the shift factors** used for PnBA-94k Master curve

Network linear PnBA100k-co-4Ptpy

Linear Rheology with metal ion

Network linear PnBA100k-co-14Ptpy

8

10

 10^6

10^t

[a] 104

້ບ _____10³

10

10

10

10

dynamics

 10°

10¹

Network linear PnBA100k-co-14Ptpy

Network linear PnBA100k-co-Ptpy

 $\omega.a(T)$ [rad/s]

10²

10

Linear Rheology with metal ion

Procedure:

The polymer is dissolved in THF.

A small amount of DDT was added (reducing agent).

Subsequently, 10 eq BuNH2 was added and the mixture is stirred for 4h. Then 10eq of BuNH2

with 20 eq of Butyl Acrylate are added and the mixture is stirred for 24h.

Finally the mixture is precipated in MeOH and filtrated.

 \sim

Procedure:

The polymer is dissolved in THF and an excess of nBa is added. A small amount of DDT was added (reducing agent). Subsequently, 10 eq BuNH2 was added and same amount 16h after. Finally the mixture is precipated in MeOH/water and dried.

<u>Network ABA triblock 1</u>

(3) PS9,5k-co-PnBA82k-co-PS9,5k 100 1,48 2,5g -45 19 16 (4) PS9,5k-co-PnBA130k-co-PS9,5k 145 1,53 5,6g -45 19 13 (5) PS9,5k-co-PnBA150k-co-PS9,5k 165 1,56 3,9g -45 19 11 ************************************	Shear Rheology (linear regime)	PS content (%)	PS total length (kg/mol)	Tg (°C)	m (g)	D	Mn (kg/mol)	Name	
(4) PS9,5k-co-PnBA130k-co-PS9,5k 145 1,53 5,6g -45 19 13 (5) PS9,5k-co-PnBA150k-co-PS9,5k 165 1,56 3,9g -45 19 11 (5) PS9,5k-co-PnBA150k-co-PS9,5k 165 1,56 3,9g -45 19 11	G_N^{0} = 2.10 ⁵	16	19	-45	2,5g	1,48	100	(3) PS9,5k-co-PnBA82k-co-PS9,5k	
(5)PS9,5k-co-PnBA150k-co- PS9,5k PS9,5k-PnBA150k-PS9.5k PS9.5k-PnBA150k-PS9.5k PS9.5k-PnBA150k-PS9.5k PS9.5k-PnBA150k-PS9.5k PS9.5k-PnBA100k-PS9.5k PS9.5k-PnBA100k-PS9.5k	$G_N^0 = 2.10^5$	13	19	-45	5 <i>,</i> 6g	1,53	145	(4) PS9,5k-co-PnBA130k-co- PS9,5k	
PS9.5k-PnBA150k-PS9.5k 10 ⁶ 10 ⁶	G_N^0 = 2.10 ⁵	11	19	-45	3,9g	1,56	165	(5)PS9,5k-co-PnBA150k-co- PS9,5k	
		BA100k-PS9.5k	PS9.5k-Pn		5k	5k-PnBA130k-PS9.	10 ⁸	PS9.5k-PnBA150k-PS9.5k	
	INITIAL TRA	10000000000000000000000000000000000000		- 10 ⁴ [8] - - - - 10 ² - 10 ¹					

Name	Mn (kg/mol)	D	m (g)	Tg (°C)	PS total length (kg/mol)	PS content (%)	Shear Rheology (linear regime)
(6) PS12,5k-co-PnBA62k-co- PS12,5k	87	1,45	~1,6	~20	25	29	G _N ⁰ = 1,5.10 ⁶
(7) PS12,5k-co-PnBA35k-co- PS12,5k	60	1,45	1,5	1:-45 2:80	25	42	$G_N^0 = 2.10^7$
(8) PS25k-co-PnBA120k-co-PS25k	170	1,5	2	1: -45 2: 100	50	30	

Plan:

• Blend sample (6) with different chain length of PS to enhance phase separation

• Blend sample (7) with short (8 kg/mol) and long (94 kg/mol) PnBA to swell the PnBA matrix

Shear Rheology In the linear regime

Rheometer procedure

Rheometer: ARES-G2 Linear regime

Dynamic Time Sweep at 130°C :

- Remove sample memory shape (due to solvent evaporation)
- Sample equilibration

Start measurement at 100°C until -20°C :

- Dynamic time sweep (~10min)
- Dynamic strain sweep (0,1 to 20%)
- Dynamic frequency sweep (strain= 3...7%)

Fixed Plate

10^t

10^⁴

[Ba]

ັບ¹10²

10

10[°]

Ū

Network ABA triblock 1

Linear Rheology

Ref: 42% PS content

Outlook and future work

Triblock PS-*b*-PnBA-*b*-PS :

- Select the system for double network : Blend with short linear PnBA-co-Ptpy or Star PnBA for non linear study
- Choose a system for dual network based on phase separation and Metal-Ligand association
- Study the effect of PnBA matrix swelling on the PS25k-b-PnBA120k-b-PS25k sample and the structure by SAXS

Metal-Ligand based system:

- Synthesize a linear PnBA-co-Ptpy around 20k for Double Dynamics Network use
- Characterize Star PnBA100k for Double Network use

Thank you for your attention

10/09/2020

