Soft Thermoplastic Elastomers (TPEs):

Understanding temperature and time dependence of their mechanical properties

Simone Sbrescia - M. Seitz, T. Engels (DSM) – E. Van Ruymbeke (UCLouvain) 10.09.2020

NUTRITION • HEALTH • SUSTAINABLE LIVING

Strain at break dramatically decreases for soft-TPEs

General phenomenon occurring across a range of different chemistries and type of associations.

 A problem that can limit the temperature range accessible for some applications and place limitations on processing conditions

Understanding the high-T deformation behavior of soft-TPEs

Aim to fill the gap in literature with a systematic description of the effect of *M_w* and composition on the T resistance and strain hardening

- What controls the level of stress and strain?
- What is the failure mechanism?
- What influences this behavior?

Approach

Approach

Approach

Confidential

Materials

Soft-Thermoplastic elastomers (TPEs) – Segmented block-copolymers

Materials

Soft-Thermoplastic elastomers (TPEs) – Segmented block-copolymers

Materials	SB [wt%]	HB [wt%]	Mn_SB [kg/mol]	Tm peak [°C]	Х _с [%]	<n> [#]</n>	M _n * [kg/mol]
60_PTMO2 k	60	40 	2	200	17	6.9	24.6
70_PTMO2k ↓ SB _{wt%} ↓	70	30	2	175	9	8.6 24.1	27.2

 $\mathsf{SB}_{\mathsf{length}}$

Materials

Soft-Thermoplastic elastomers (TPEs) – Segmented block-copolymers

* $PDI \cong 2$

Materials	SB [wt%]	HB [wt%]	Mn_SB [kg/mol]	Tm peak [°C]	Х _с [%]	<n> [#]</n>	M _n * [kg/mol]
60_ PTMO2 k	60	40	2	200	17	6.9	24.6
70_PTMO2k ↓ SB _{wt%} ↓	70	30	2	175	9	24.1	27.2 27.2 67.0

Materials

Soft-Thermoplastic elastomers (TPEs) – Segmented block-copolymers

Morphology and its evolution

Morphology: network of ribbon-like PBT crystals

- The crystal skeleton of PBT crystals is the stress-bearing structure in the linear regime.
- PBT crystals are interconnected with each other via non-crystallized segments.

Morphology: network of ribbon-like PBT crystals

- The crystal skeleton of PBT crystals is the stress-bearing structure in the linear regime.
- PBT crystals are interconnected with each other via non-crystallized segments.

Morphology: network of ribbon-like PBT crystals

- The crystal skeleton of PBT crystals is the stress-bearing structure in the linear regime.
- PBT crystals are interconnected with each other via non-crystallized segments.

Transition from a percolated network of crystals (a) to an elastomeric-like network (b).

• Cyclic / Hysteresis tests

Transition from a percolated network of crystals (a) to an elastomeric-like network (b).

• Cyclic / Hysteresis tests: breaking and reorientation of PBT crystals + extension of a molecular network. Previous loops count as tie molecules.

Transition from a percolated network of crystals (a) to an elastomeric-like network (b).

• Further stretching leads to more crystal breakage and to a highly oriented conformation (c)

Transition from a percolated network of crystals (a) to an elastomeric-like network (b).

• Further stretching leads to more crystal breakage and to a highly oriented conformation (c)

Transition from a percolated network of crystals (a) to an elastomeric-like network (b).

• Further stretching leads to more crystal breakage and to a highly oriented conformation (c)

Varying Mw – fixed SB/HB

Varying M_n – fixed SB/HB

 Increasing the M_n shows little effects at low/moderate strains, while boosts the strain hardening in the high strain regime.

Varying M_n – fixed SB/HB

- Increasing the M_n shows little effects at low/moderate strains, while boosts the strain hardening in the high strain regime.
- Strong influence of SIC_{PTMO} on the nonlinear behavior at T < ~50°C

Higher M_n leads to better connected samples – + T resistant Varying M_n – fixed SB/HB

- Increasing the M_n shows little effects at low/moderate strains, while boosts the strain hardening in the high strain regime.
- Strong influence of SIC_{PTMO} on the nonlinear behavior at T < ~50°C
- Strain hardening increases with M_n even at T > T_{m, SIC_PTMO} (~50°C)
- Final extensibility increases with M_n at T > T_{m, SIC_PTMO} (~50°C)

Effect of strain rate

Effect of strain rate (¿) on the strain hardening - Different Mn

 At 25°C, there is no strain-rate dependence up to ~400%, later on at higher strain rates correspond higher stresses.

- 60_PTMO2k_29 @ 500 mm/min 60_PTMO2k_50 @ 500 mm/min
- 60_PTMO2k_29 @ 5 mm/min
- 60_PTMO2k_50 @ 5 mm/min

Effect of strain rate ($\dot{\epsilon}$) on the strain hardening - Different Mn

Time-Temperature-Mw dependent relaxation mechanism

- At 25°C, there is no strain-rate dependence up to ~400% , later on at higher strain rates correspond higher stresses.
- At 100°C :
 - Failure strain increases with strain rate.
 - Strain hardening of the high Mn is less affected by strain rate.

- 60_PTMO2k_29 @ 500 mm/min
 60_PTMO2k_50 @ 500 mm/min
- 60_PTMO2k_29 @ 5 mm/min
- 60_PTMO2k_50 @ 5 mm/min

Results explanation: setting the basis for modelling

Summary of the molecular interpretation of the mechanical results

• Amount of stress bearing units at each stage of deformation: entanglements and HBs.

Results explanation: setting the basis for modelling

Summary of the molecular interpretation of the mechanical results

• Amount of stress bearing units at each stage of deformation: entanglements and HBs.

• Loss of network connectivity

Up to ~300% of strain no differences in mechanical response with M_n

```
Low M<sub>n</sub> = high M<sub>n</sub>
(besides the initial # of
dangling ends)
```


 $\epsilon \cong 300\%$

29

Crystallized PBT segment
 Non-crystallized segment (PTMO + amorphous PBT)

Up to ~300% of strain no differences in mechanical response with M_n

After a pull-out event, the likelihood of losing stress bearing units decreases with M_n

After a pull-out event, the likelihood of losing stress bearing units decreases with M_n

After a pull-out event, the likelihood of losing stress bearing units decreases with M_n

Assumptions and inputs for the model

Assumptions

- Monodisperse chains
- Monodisperse SBs and HBs
- Entanglements between two HBs cannot relax (trapped)
- Arrhenius scaling of relaxation constants

Assumptions and inputs for the model

Assumptions

- Monodisperse chains
- Monodisperse SBs and HBs
- Entanglements between two HBs cannot relax (trapped)
- Arrhenius scaling of relaxation constants

$$\frac{P_{dang}}{2} = \frac{M_{dang}}{M_{chain}} \cong \frac{1 - \langle \#HB \rangle (t) \times \frac{HB_{length}}{M_{chain}}}{[1 + \langle \#HB \rangle (t)]}$$

If:
$$\begin{cases} \tau_{relax} < 1/\dot{\varepsilon} \longrightarrow P_{dang} \text{ acts as solvent} \\ \tau_{relax} > 1/\dot{\varepsilon} \longrightarrow P_{dang} \text{ contributes to the stress response} \end{cases}$$

Crystallized PBT segment Non-crystallized segment (PTMO + amorphous PBT)

What happens when the chains lose associations

#SBUs: # segments btw 2 entanglements + # segments btw entanglements and HB

What happens when the chains lose associations

What happens when the chains lose associations

What happens when the chains lose associations

Slip-out depends on T, $\dot{\varepsilon}$ and dangling-end length

Dangling-end modelled as an arm of a star polymer

Slip-out depends on T, $\dot{\varepsilon}$ and dangling-end length

Dangling-end modelled as an arm of a star polymer

Dangling-end length (*M*_{dang}) increases as the HB are pulled-out

Relaxation time increases with M_{dang} . Estimated times are very close to experimental time scales $(1/\dot{\epsilon}_2)$.

The strain-rate dependency decreases with Mw - by decreasing the rate more segments of chain are allowed to relax

The strain-rate dependency decreases with Mw - by decreasing the rate more segments of chain are allowed to relax $M_{dama}(t)$

• Dangling-end short enough to relax via retraction

The strain-rate dependency decreases with Mw - by decreasing the rate more segments of chain are allowed to relax $M_{dama}(t)$

- Dangling-end short enough to relax via retraction
- Dangling-end too long to relax: plateau stress which decrease is determined only by the loss of hard
 segments

The strain-rate dependency decreases with Mw

- Dangling-end short enough to relax via retraction
- Dangling-end too long to relax: plateau stress which decrease is determined only by the loss of hard segments
- Higher Mn higher connectivity: lower chances for chains to be disconnected from the network

The strain-rate dependency decreases with Mw

- Dangling-end short enough to relax via retraction
- Dangling-end too long to relax: plateau stress which decrease is determined only by the loss of hard segments
- Higher Mn higher connectivity: lower chances for chains to be disconnected from the network
- Higher Mn less strain rate dependency

Explanation of the experimental results

Many assumption behind the model, but it gives a possible physical explanation for the different strain-rate dependency with Mw

Conclusions

Stress response linked to the residual connectivity: HB pull-out and slip-out of non trapped entanglements.

BRIGHT SCIENCE. BRIGHTER LIVING.™

