

DoDyNet online meeting, September 2020

Rheological and Mechanical Properties of Diamine Neutralized Entangled Poly(styrene-co-4-vinylbenzoic acid) lonomers

ESR 6: Wendi Wang

Jeppe Madsen Anne Ladegaard Skov Ole Hassager Qian Huang

Outline

- Rheological properties of neutralized ionomers: towards designing ionomers with good flowability, stretchability and extensibility
- Background and objective
- Materials
- Linear rheology
- Non linear extensional rheology
- Summary and conclusion

- Mechanical properties of neutralized ionomers
- Background and objective
- Materials
- Sample preparation
- Mechanical tests
- Outlook

lonomers

• What is ionomer?

Soft Matter 2018, 14, 2961

• Feature

Macromolecules 1991, 24, 1071

Long relaxation time Consequence ٠ Difficult to process 10- $E_{\rm a} = 10kT$ τ_s ↓ 10^{1} $3^{0}_{-10^{0}}$ $3^{0}_{-10^{-1.0}}$ $3^{0}_{-10^{-1.0}}$ G" G' $N/N_{\rm e} = 25, N_{\rm e}/N_{\rm s} = 1/5$ ---- $N/N_{\rm e} = 25, N_{\rm e}/N_{\rm s} = 1$ 10-2 ---- $N/N_{e} = 25, N_{e}/N_{s} = 5$ ----10-3 $10^{-10} 10^{-9} 10^{-8} 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} 10^{3}$ JOR 2016, 60, 1031 $\omega \tau_{\rm e}$

Objective and strategy

Design entangled ionomers with good:

- 1. Flowability (avoid ionic clusters)
 - ion concentration
 - counter ion species
- 2. Stretchability
 - higher strain hardening
- 3. Extensibility
 - double dynamics network of
- ionic interaction and entanglements

 T_{g} vs. sulfonate concentration for alkyl ammonium salts of the form NRH₃⁺

Materials

- Poly(styrene-co-4-vinylbenzoic acid) (PS-co-PVBA, 5 mol%, ~40 acid groups/chain), Z=6.4
- Diamines

H₂N NH₂

Material	M _w [g/mol]	M _w /M _n
PS _{0.95} A _{0.05}	85400	1.22
Jeffamine ED600	656	1.08
Jeffamine ED900	940	1.22
Jeffamine D2000	2144	1.18

Materials

• DSC results

Material	Т _д [°С]
PS _{0.95} A _{0.05}	105
PS _{0.95} A _{0.05} +ED600	76
PS _{0.95} A _{0.05} +ED900	66
PS _{0.95} A _{0.05} +D2000	25

Materials

• DSC results

Material	Т _д [ºС]
PS _{0.95} A _{0.05}	105
PS _{0.95} A _{0.05} +ED600	76
PS _{0.95} A _{0.05} +ED900	66
PS _{0.95} A _{0.05} +D2000	25

2000

Linear rheology

• SAOS measurements

LVE temperature from top to bottom: 140, 100°C (same T-T_a)

High frequency, same Rouse relaxation Low frequency, diamine length ↑, terminal relaxation time↓

Linear rheology

• Han's plot: a blend is truly homogenous if plot logG' vs logG" has a slope of 2 in the terminal region

DTU

Non linear extensional rheology

Focus on sample $PS_{0.95}A_{0.05}+D2000$

DTU

Role of ionic interaction (stickers) at equilibrium

- Diluting extent at equilibrium?
- **<u>REF2</u>**: PS77k/OS2k, same weight fraction of long chain as in the ionomer (68%)

10¹

10²

DTU

Role of ionic interaction (stickers) at equilibrium

- Diluting extent at equilibrium?
- **<u>REF3</u>**: PS77k/OS2k, higher weight fraction of long chain than in the ionomer (82%)

Role of ionic interaction (stickers) in start-up flow

Role of ionic interaction (stickers) in start-up flow

0.114 s⁻¹ 0.009 s⁻¹ REF1 (PS77kD2000) PS_{0.95}A_{0.05}+D2000

Role of ionic stickers at large strain

Sticker re-association

Sample PS77kOS2k-82 and PS $_{0.95}A_{0.05}$ +D2000 are stretched at same W_i.

Summary and conclusion

- A series of PS based ionomers are prepared by neutralizing poly(styrene-co-4-vinylbenzoic acid) with diamines.
- The resulting ionomers showed lower T_{α} compared to the parent polymer.
- Flowability: Ionic cluster formation was prevented by using a low fraction of ion concentration and ammonium as counter ion.
- **Stretchability**: The introduction of stickers of different lengths provides the possibility to tune stretchability of the materials.
- Extensibility: The sticker reorganization together with entanglement enable an excellent extensibility of ionomers.

Outline

- Rheological properties of neutralized ionomers: towards designing ionomers with good flowability, stretchability and extensibility
- Background and objective
- Materials
- Linear rheology
- Non linear extensional rheology
- Summary and conclusion

- Mechanical properties of neutralized ionomers
- Background and objective
- Materials
- Sample preparation
- Mechanical tests
- Outlook

Improvement of mechanical properties of glassy PS

Polystyrene used at low temperature?

Material	T _g [°C]	T _{test} [ºC]
PS0.95A0.05	105	25
PS0.95A0.05+ED600	76	-4
PS0.95A0.05+ED900	66	-14
PS0.95A0.05+D2000	25	-55

Theoretically, flexibility can be achieved at low temperature!

Sample preparation

Quench at Hencky strain 2.2 and test mechanical properties

Prestretch sample ٠

- Wait for relaxation ٠
- Sample was stretched to Hencky strain 2.2, ٠ quench while motor is blocked.

Tensile tests

Yield stress
PS_{0.95}A_{0.05}
PS_{0.95}A_{0.05}+ED600

٠

0,4

 ϵ_{Eng}

0,2

PS_{0.95}A_{0.05}+ED900 PS_{0.95}A_{0.05}+D2000

0,6

0,8

 $\dot{v} = 0.05 \ min^{-1} \ T_{g}$ -T=80°C

100

80

60

40

20

0

0,0

σ_{Eng} [MPa]

DMA Q800 (Copenhagen University)

Discussion

• Yield stress may have rate and temperature dependence

Figure 12 Influence of a secondary relaxation process. Left: Loss angle versus temperature. Right: Compressive yield stress versus strain rate.

Polymer Science: a Comprehensive Reference, 2012, Volume 2, pp. 723-747

Secondary transition in the materials?

- Temperature sweep tests are performed at 1 Hz with amplitude 20 micron, on film tension clamp
- Corresponding tensile test temperatures are marked in green dash lines.

DTU

Outlook

• Qualification of orientation extent

• Compare intrinsic difference of the samples with non-oriented film

