

Nonlinear Viscoelastic Response of Metallo-Supramolecular Polymeric Networks

ESR#5-Christina Pyromali

WP2, WP3: Structure & Dynamics

Online Meeting III, 11-09-2020

4 arm star poly(n-butyl acrylate)s

		K ₁ [M ⁻¹]	k _{a,1} [M⁻¹ s⁻¹]	k _{d,1} [s⁻¹]	K ₂ [M- ¹]	k _{a,2} [M ⁻¹ s ⁻¹]	k _{d,2} [s⁻¹]	β= K ₁ ·K ₂
 Same Charge 	Zn(II)	10 ⁶	10 ^{6.1}	10 ^{0.1}	10 ^{5.2}	-	-	1011.2
 Similar ionic radius 	Cu (II)	10 ¹²	10 ^{7.3}	-	10 ⁶	-	-	1018
 Thermodynamic stability 	Co (II)	10 ^{8.4}	10 ^{4.4}	10-4	10 ^{9.9}	10 ^{6.7}	10 ^{-3.2}	10 ^{18.3}

Zhuge, F., *Synthesis and dynamics of metallo-supramolecular polymeric assemblies*. Université catholique de Louvain, 2018.

M _n [kg/mol]	M _e [kg/mol]	Z=M _n /M _e	Dispersity	Tg [°C]
249	18	3.4 per arm	1.2	-52

Methods

TRANSDUCER

MOTOR

Start-up shear and relaxation

- ✓ 6.2 mm or 4.1 mm CPP
- ✓ 0.1 radians lower cone plate
- ✓ 0.051 μ m fixed truncation
- Elimination of edge fracture
- Shear rates ranging from 0.1 to 1000s⁻¹

- ✓ Strain Control
- ✓ Force rebalance transducer
- ✓ Convection Oven
- ✓ Nitrogen/ Air flow for accurate temperature control

LVE 1.00eq. Zn + 1.00eq. Cu

LVE 0.50eq. Zn + 0.50eq. Co

DDNs dynamics depends on the combination of the dynamics of the corresponding single networks at the specific **temperature**, **amount** and **nature** of the metal ions

Start-up shear of DDNs

Shear Thinning I

related to the cross-linked density and the stability of the network

Shear Thinning II

Viscosity decay with shear strain or rate is more significant for DDN which is related to the cross-linked density and the stability of the network

Fractional Viscosity Overshoot

The ability to insist deformation is higher for the DDN with 0.5eq.Zn+0.5eq.Co

Fractional Viscosity Overshoot

PI stars exhibit weaker fractional overshoot and dependence on Wi

Future work

 Develop a tube based model that predicts the stress growth and relaxation upon cessation of shear flow for DDNs

Thank you for your attention!

Questions?

