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Abstract 

The rheology and the microstructure of soft particle glasses during startup flow are studied 

using three-dimensional particle-dynamics simulations at different particle volume fractions 

and shear rates.  The behavior of transient stress depends on the applied shear rate.  At large 

shear rate, soft particle glasses exhibit a static yield stress signaled by a stress overshoot 

followed by a relaxation to a steady-state value.  The buildup of the stress is driven by an 

interplay between structural anisotropy due to an accumulation of particles along the 

compression axis and a depletion along the extension axis, and compression of particles which 

are soft and deformable.At low shear rate, the stress increase is monotonic and without stress 

overshoot.  The time scale at which structural anisotropy and the stress are maximum is 

correlated to the non-affine dynamics of SPGs through the persistence time of shear-induced 

particle collisions and to the residence time of particles inside their transient cages . The static 

yield strain p  and the reduced static yield stress /p y  , where y  is the dynamic yield stress 

deduced from steady flow measurements, follow universal behaviors when correlated with the 

dimensional shear rate 0/s G & , s being the suspending fluid viscosity and 0G  the storage 

modulus, which expresses the competition between elastic restoring forces and viscous 

dissipation.  Dense suspensions of thermosensitive core-shell colloids, star-like micelles, and 

poly(ethylene oxide)–protected silica particles follow the same universal curves suggesting the 

generality of our results.    
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I. Introduction 

Glassy materials form a broad class of amorphous systems, which include colloidal [1] 

and metallic glasses [2], particulate gels [3], emulsions and foams [4], slurries and pastes [5], 

and soft particle glasses [6, 7].  Despite the large diversity of their composition, they have in 

common many important features.  At rest, they behave like amorphous solids that respond 

elastically to small perturbations.  However, they can deform irreversibly and flow when they 

experience large enough stresses.  This transition from solid to liquid with increasing stress is 

called yielding.  Understanding and controlling the way that glassy materials yield and flow 

offer profound insights on the macroscopic rheology and microscopic dynamics of amorphous 

materials [8]. Furthermore, the question has essential applications in material science and 

engineering, such as drilling muds, high-performance coatings, food products, and ceramic 

pastes [9].  

Startup flow experiments are familiar with rheological techniques used to investigate 

the yielding properties of glassy materials.  A startup flow experiment consists of applying a 

constant shear rate to the material initially at rest and monitoring the transient stress response.  

The stress first increases linearly with the accumulated strain, which represents the elastic 

response of the material.  At larger strain, a more complex behavior takes over: the stress keeps 

on growing and eventually goes to a maximum value before decreasing to a steady-state value.  

The stress overshoot (
p ) represents the static yield stress or the minimum stress that the 

material has to overcome to start flowing.  The position of the overshoot will be called the static 

yield strain ( p ) in the following.  The static yield stress, the static yield strain, and the stress 

at steady-state all depend on the applied shear rate.  The static yield stress must not be confused 

with the dynamical yield stress ( y ), the minimum stress to maintain a steady flow. The 

dynamic yield stress corresponds to the low shear-rate limit of the steady flow curve ( ) &  and 
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it can be determined by fitting the flow curve to the Herschel-Bulkley equation 
n

y k    &.  

This phenomenology is quite general and has been reported in a variety of materials as different 

as colloidal glasses [10-22], metallic glasses [23-25], colloidal gels [26-36], nanocomposites 

[37], dense suspensions of soft particles [38-47], emulsions and foams [48-51], polymer melts 

and solutions [52-57].  Transient yielding is vital for process design since the static yield stress 

can generate pressure perturbations during startup.  It is also crucial from a fundamental 

perspective because it contains the evolution of the structure of the material from its initial state 

and reveals the microscopic mechanisms associated with relaxation to the steady-state.  

Different theories have attempted to capture the generic origin of stress overshoot in amorphous 

solids [58-60]. 

The yielding properties of hard-sphere suspensions in the entropic glass regime have 

been studied using a combination of experiments [9-18, 21, 22], molecular [10, 13, 16] and 

Brownian dynamics [12, 13, 19, 20] simulations, and Mode Coupling Theory [10, 12-19].  

Three well-characterized model systems have been used at volume fractions between the glass 

transition and the close-packing volume fractions: sterically stabilized poly(methyl 

methacrylate) (PMMA) suspensions [10-13, 15, 16, 19, 21, 22], core-shell particles consisting 

of a polystyrene core and crosslinked (N-isopropyl acrylamide) (PNIPAM) as the outer shell 

[14, 15, 18], and silica particles [17].    In Hard Sphere suspensions, the transient response 

results from the competition between Brownian diffusion and flow advection which is 

expressed by the Peclet number (Pe). In experiments and simulations, the normalized height of 

the overshoot is found to increase with the Peclet number and ranges from 0, i.e., the overshoot 

disappears when Pe →0, to about 0.5.  In experiments, it is found that the stress overshoot 

decreases and even disappears when the volume fraction increases [12, 19].  The static yield 

strain increases with the Peclet number from 0.1 to 0.4. MCT theory captures the shape of the 

stress response as well as the static yield stress and strain semi-quantitatively [14,17,18].  
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The nonlinear stress response of hard-sphere glasses during startup flow is connected to 

the evolution of the microstructure, which has been investigated both in simulations [12, 19, 

20] and in experiments using confocal microscopy [10, 12, 13, 15, 16, 19] and X-ray scattering 

[17].  The application of shear flow distorts the particle distribution function in a way that 

particles accumulate along the compressive axis and deplete along the extension axis.  This 

local anisotropy is primarily responsible for the stress overshoot.  It is maximum at the static 

yield strain and then decreases to steady-state as the stress accumulation is released [17].  The 

microscopic particle scale dynamics has been determined using confocal microscopy [10, 12, 

13, 16, 19].  Plastic rearrangements are dominant after the stress overshoot [17].  Moreover, 

whereas particle motion is subdiffusive at rest because of cage effects, the dynamics becomes 

ballistic at an intermediate time scale during startup flow. Close to the glass transition volume 

fraction, the timescale of the stress overshoot has been correlated with the timescale of ballistic 

motion [10].  

In the presence of attractive interactions, suspensions form attractive glasses at high 

volume fractions and gels at low volume fractions [3].  In attractive systems, the yielding results 

from the competition between flow advection, bond dynamics, and Brownian motion.  Two-

step yielding with two distinct overshoot has been observed in experiments [28, 29] and 

simulations [30-32].  The first step at strain values in the range 0.01-0.1 is associated with the 

breaking of the attractive bonds: particles exchange neighbors, but they remain topologically 

trapped.  The second step at much larger strain amplitudes corresponds to the opening of the 

cages leading to the melting of the glass [11] or the fragmentation of the gel clusters [28, 29, 

32].  Recent simulations have shown that this scenario may not be universal depending on the 

potential acting between colloidal particles in gels [36].  The transient microstructure during 

startup shear flow of attractive gels is also characterized by strong anisotropy [32-34, 36, 55, 

61].   
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Besides hard particle suspensions, soft particle glasses (SPGs) constitute a broad class 

of materials, which are important for technological reasons and at the same time pose new 

fundamental questions.  Unlike in hard-sphere suspensions, where particles only interact 

through excluded volume interactions, in SPGs, particles are jammed, and elastic contact forces 

make the dominant contribution to the microstructure and rheology.  Whereas hard particle 

suspensions have been widely studied, there exist far less systematic studies of the transient 

flow rheology of SPGs.  Yet startup flows of dense suspensions of thermosensitive microgels 

[40, 44], polyethylene oxide-protected silica particles [38], multiarm star polymers [39], 

concentrated emulsions [48, 49] dispersions of wax crystal in oil [45], Carbopol suspensions 

[42] are characterized by a rich phenomenology including stress overshoots.  The height of the 

peak usually increases with the time that the system has spent at rest after preshearing, but its 

location does not [38, 39].  This feature, which is also present in hard-sphere glasses [22], has 

been attributed to aging.  Still more intriguing, in some systems, stress overshoots are associated 

with a tendency to develop transient or permanent shear banding during yielding [39, 42], a 

phenomenon which has been reproduced in simulations where particles interact through the 

Lennard-Jones potential [46, 47].  

In this paper, we analyze the connection between the existence of soft contact 

interactions and the transient behavior of soft particle glasses in startup shear flows from three 

perspectives: the scaling properties of the shear stress, the evolution of the microstructure from 

rest to steady-state, and the particle scale dynamics.  We follow a micromechanical approach 

that was shown to successfully describe the steady-state rheology and the stress relaxation upon 

flow cessation of dense suspensions of microgels and concentrated emulsions [62-65].  

Athermal particles interact through a soft Hertzian-like potential, which is relevant to real 

systems [6].  The micromechanical model is implemented in 3D large scale simulations that 

provide the shear stress and normal stress differences growth as well as the transient evolution 
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of the microstructure and the microscopic dynamics during startup flow.  The stress growth 

proceeds according different stages, which are determined by an interplay between structural 

anisotropy and particle compression.  The yield strain at which the peak overshoot is located 

and the value of the static yield stress are described by scaling laws explicitly accounting for 

particle elasticity and deformability.  Our prediction compares well with available experimental 

data for dense suspensions of soft particles. 

II. Micromechanical model and simulation method 

II. A Micromechanical model 

The details of the model and the simulation method have been presented in previous 

studies [62-68] and, here, we review the important features.  Soft particle glasses are modeled 

as suspensions of N non-Brownian elastic particles in a solvent with a viscosity s  that are 

jammed in a cubic simulation box at volume fractions larger than the random close-packing of 

hard spheres. Suspensions with an average radius of unity, polydispersity index of 0.2  , and 

volume fractions of 0.7, 0.8  , and 0.9 are studied.  The value of the polydispersity agrees 

with that currently found in experiments [62, 64]; it prevents crystallization at high shear rates 

[66, 69]. Because the Poisson ratio for the particles is 0.5, their volume remains constant upon 

deformation.  The volume fraction of the suspension is computed as the ratio between the total 

volume of the particles and the volume of the box.  As seen in Fig. 1A, particles α and β create 

a flat facet at contact resulting in a deformation of  , 0.5 cR R r R        , where R and 

R  are the radii of particle α and β, r   is the center-to-center distance, and cR  is the contact 

radius, which is given as  cR R R R R     .  In the following  is called the overlap 

deformation between particles  and  .  
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Above the close-packing volume fraction, the particles are subjected to repulsive elastic 

forces that act perpendicularly to the contacting facets.  The elastic force between two particles 

 and is given by the generalized Hertz law [62, 63, 70]: 

 
* 24

3

e n

cCE R  f n , (1) 

where E* is the particle contact modulus:  * 22 1E E   , with E being the Young modulus 

and  = 0.5 is the Poisson ratio.  C and n are parameters, which depend on the degree of 

compression.  For 0.1   1.5n   and 1C  , for 0.1 0.2   3n   and 32C  , and if 

0.2 0.6   5n   and 790C  [62, 70].  n  is the unit vector along the perpendicular 

direction to the facet.  We also take into account elastohydrodynamic lubrication (EHD) forces, 

which are due to the flow of solvent in the thin films between the particles.  The EHD force 

between two particles is parallel to the contacting facets and is given by [62,]:   
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where uαβ,|| is the relative velocity component in the direction of 
||n , which is the unit vector 

along the parallel direction to the facet.  The fluid inertia is neglected, and the forces are 

assumed to be pairwise additive.  The suspension is subjected to the velocity field 
*
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, where ex is the basis vector in the flow direction and y is the coordinate in the velocity gradient 

direction y (see Fig. 1B).  The resulting equations of motion are made dimensionless by scaling 
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where the tilde quantities are dimensionless variables, x is the position of particle andM  

is the mobility function which is that of a particle corrected by a factor.  ( )f   that accounts for 

the reduction of mobility at high volume fraction ( ( ) / 6 )M f   ; ( )f   is set to 0.08 in the 

simulations to match the flow curves with experiments.  The form of this equation shows that 

the dynamics is characterized solely by the dimensionless shear rate *  s E%& & , which 

represents the ratio of viscous to elastic forces, and the overlap deformation that depends on the 

volume fraction. 

We have also determined the viscoelastic properties of SPGs using Small Amplitude 

Shear Rheology following our previous works [69,].  The suspensions are subjected in the x-

direction to an oscillatory shear strain of amplitude and frequency, 0 and   respectively: 

0 sin t   .  From the stress response we can compute the storage modulus, '( )G  , and loss 

modulus, ''( )G  ,  as a function of frequency. The storage modulus exhibits a low-frequency 

plateau allowing the determination of the low-frequency modulus, 0G . We have also 

determined the low-frequency modulus of SPGs from the energy change computed during a 

cyclic uniaxial deformation [71].  Both methods lead to identical values of the low-frequency 

modulus.   

II. B Simulation method 

A close-packed disordered structure is first created using the Lubachevsky and Stillinger 

algorithm [72] and compressed by reducing the box size until the desired volume fraction is 

achieved. The Lees-Edwards [73] boundary conditions are then used in the LAMMPS package 

[74] in order to impart the desired shear rate to the simulation box.  The stress tensor of the 

suspensions is determined using the Kirkwood formula [75]: 
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1 N N

V
  

  

 σ f x x , (4) 

where V is the volume of the system and f  is the total force acting on particle α from particle 

β.  The shear stress 
xy , the first and second normal stress differences, 

1 xx yyN    and 

2   yy zzN , are computed from the appropriate components of the stress tensor.  The flow 

properties of the suspensions are investigated over a broad range of shear rates ranging from 

910 %&  to 410 %& .  The simulations are performed for ten strain units, and the stress tensor is 

calculated at regular strain intervals.  The value of the time step is chosen, such that it produces 

107 steps per strain at each shear rate.   

Equilibrium in this paper refers to mechanical equilibrium, where the net force on each 

particle is zero.  SPGs packings can be equilibrated during the initial preparation by using small 

compressive steps, allowing relaxation during each step using the conjugate gradient algorithm. 

We present two types of simulations: (i) start up flow simulations where a constant shear rate 

is applied to SPGs that are initially at rest and have been equilibrated (Section III.A-B); and (ii) 

startup simulations on SPGs that have been presheared and have not fully relaxed the residual 

forces on each particle and the resulting residual stresses accumulated during the preshear flow. 

In simulations of type (i), each particle is force- and torque-free meaning particles in the 

suspension are in mechanical equilibrium and that there are no residual stresses.  In 

measurements of type (ii) the startup flow takes place on a material that has been presheared 

and particles are not at mechanical equilibrium. 
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FIG 1.  (A) Schematic showing pairwise interaction between particles α and β. (B) Configuration of a 

suspension with a volume fraction of 0.9 and a polydispersity index of δ = 0.2, which is subjected to 

shear flow. The flow (u), gradient (∇), and vorticity (w) directions are labeled on the axes. 

 

Most of the simulations are performed with 104 particles. At high shear rates ( 710 %& ), 

we find that the stress-strain curves exhibit a clear stress overshoot and the results are 

independent of the simulation box size, simulations with 1.25×105 and 106 particles leading to 

the same stress variations as simulations with 104  particles.  At low shear rates ( 710 %& ), the 

stress overshoot progressively decreases, and it is necessary to improve the accuracy of the 

calculations by increasing the number of particles in the simulation box. We perform 

simulations with 103, 104, 1.25×105, and 106 particles to investigate the effect of the number of 

particles on the stress variations during startup flow at low shear rates, i.e., close to the yield 

point of the material.  The shear stress as a function of the strain for two low values of the shear 

rate is plotted in Figs. 2A and 2B.  For 103 particles, the shear stress shows significant 

fluctuations, which make the detection of the overshoot challenging.  As the number of particles 

increases up to 106, the amplitude of the fluctuations is decreased, and a maximum in the stress 

becomes detectable.  The standard deviation of the shear stress decreases when the number of 

particles increases as a power-law (Fig. 2C).  A stress peak is detected when the difference 
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between the maximum stress value and the steady-state stress is larger than the stress 

fluctuations.   

 

FIG. 2.  Shear stress 
*E  as a function of strain   computed at (A) 

810  , (B) 
910   for 

suspensions with different numbers of particles. (C) The standard deviation (SD) of the shear stress 

normalized with respect to the steady-state stress at different shear rates as a function of the number of 

particles.  The volume fraction is 0.8  . 

The structural properties of the flowing suspensions are characterized by pair 

distribution functions.  The dynamic pair distribution function ( )g r  in the flow-gradient is 

computed at different strain values to investigate the structural rearrangement occurring during 

startup flow.  To connect the microstructure to the macroscopic properties of the suspensions, 

the dynamic pair distribution function between the particles is decomposed it into an orthogonal 

series of spherical harmonic functions [76]: 

        0 , ,
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0
( )g r is the static pair distribution function.  The functions ( , )lmY   are a set of orthogonal basis 

functions obtained from solutions of the Laplace equation in spherical coordinates [62]. 
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The coefficient 
2, 2 ( )g r

 of the expansion which, here, is the dominant contribution to the shear 

component of the stress tensor [62] can be used to determine the elastic contribution to the shear 

stress: 

 

2

2 3

2, 2

0

( ) ( )
15

R

en r f r g r dr


    , (7) 

where n is the number density of particles and ( )ef r is the elastic force between particle pairs.  

We have connected the macroscopic rheology during startup flow to the non-affine 

microscopic dynamics of SPGs under shear, focusing on the persistence time of shear-induced 

particle collisions and on the residence time that characterizes the time particles spend in their 

cages before hopping to another environment [68]. The persistence time is obtained from the 

normalized autocorrelation function of the contact elastic force experienced by the particles 

when they collide: 

  
 

 
0 0
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F
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where ( )tF  is the elastic force on a particle at time t  and 0( )tF  the magnitude of the force 

fluctuations. Correlations functions  C t  have been computed for different shear rates and 

different volume fractions, and for each of them the persistence time 
dt  has been determined 

from the decay time defined as   1/dC t e . The residence time has been obtained from the 

incoherent scattering function: 
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1
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N

s j j

j
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 k k r r , (9) 
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where k   is a spatial wave vector and N is the total number of the particles in the simulation.  

We have calculated the incoherent scattering function at different volume fractions and shear 

rates at a wave vector 4.0kR  , which corresponds to the cage size.  The time decay of the 

incoherent scattering function is nearly exponential, from which we determine the residence 
ct

. When 
dt and 

ct  and are non-dimensionalized using the shear-rate, we get the so-called 

persistence strain 
d   and residence strain 

d  that can be compared to the static yield strain. 

The reader is referred to our recent study [68] for more details on the calculations and discussion 

on the importance of these two quantities in determining the macroscopic rheology of SPGs.   

III. Results  

III. A. Macroscopic properties evolution during startup flow 

The shear stress (
* E ) as a function of the shear strain (  ) is plotted in Figs. 3A-C for 

suspensions with volume fractions of 0.7, 0.8  , and 0.9 in simulations at different shear rates 

ranging from 910 %&  to 410 %& .  Switching the shear flow on from rest, the shear stress 
*( / )E   

initially exhibits a nearly linear increase corresponding to the elastic response of the SPG 

followed by a nonlinear behavior.  The shear stress undergoes an overshoot, and by releasing 

the stored stress, it decreases and reaches a steady state.  At lower shear rates, the overshoot 

disappears at large volume fractions.  This observation reveals that yielding is smooth and 

monotonic at low shear rates, but it is characterized by stress overshoots at high enough shear 

rates. A stress overshoot represents the minimum stress to apply in order to initiate macroscopic 

flow and it corresponds to the static yield point. This behavior occurs consistently for all volume 

fractions at high enough shear rates. The first ( *

1N E ) and second normal ( *

2N E ) stress 

differences exhibit similar variations (see SI.1) 
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FIG. 3.  Shear stress 
*E  as a function of   obtained at different shear rates and volume fractions of 

(A) 0.7  , (B) 0.8  , (C) 0.9  .  The inset in Fig. 3B shows that for 
* 7/ 10s E &   the stress 

at small strain compares well with  the elastic response based on the low-frequency modulus  The color-

coding in (B) and (C) is the same as in (A).    

 

In the following we characterize the static yield point by the position and the value of 

the stress overshoot,  p
 and 

p  respectively, when it exists.  The variations of  p
 as a function 

of the shear rate %& are plotted in Fig. 4A.   p
 takes a value close to 0.1 at low shear rates and 

increases with the applied shear rate up to a value of 0.45.  In addition, increasing the volume 

fraction of the suspensions at a given shear rate leads to a decrease in the value of  p
. The 

values of 
*

p E  are plotted as a function of %& in Fig. 4B.  They are well fitted to the Herschel-

Bulkley (HB) equation:    * * *
n

p p sy
E E k E    , where  *

p y
E  is the value of 

the stress overshoot at the lower limit of shear rates shown by the dashed green line in these 

two figures.  The values of the fitting parameters are reported in Table 1.  We note that the value 

of the exponent decreases from 0.58 to 0.48 when the volume fraction increases from 0.7 to 0.9.   

TABLE 1:  Fit parameters of the HB equation for the stress overshoot values in SPGs with 

different volume fractions. 

   *

p y
E  k  n  

0.70 0.00010 0.856 0.58 
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0.80 0.00073 1.809 0.57 

0.90 0.00300 1.862 0.49 

 

 

FIG. 4.  (A) Strain p , at which the shear stress shows a maximum (static yield strain) and (B) peak 

stress *

p E  (static yield stress) as a function of shear rate 
*

s E  %& & for the three volume fractions 

investigated.  The green dashed line shows the lowest shear rate that simulations can detect a stress 

overshoot. 

 

 

 

 

 

III. B Microstructure distortions during startup flow 
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The local microstructure of the suspension exhibits extreme changes during startup flow.  

Examining these changes provides valuable information about the physical mechanisms 

associated with yielding.  We discuss the high and low shear rates cases separately. 

Dynamic microstructure for high applied shear rates: 

When the applied shear rate is large, the transient stress is characterized by the existence of a 

static yield stress.  Figs. 5A-E show two-dimensional pair correlation functions  g r  in the 

flow-gradient plane computed at different strains for an applied shear rate of 410   at a 

volume fraction of  0.8  .  For a guide to the reader, the shear stress as a function strain curve 

is plotted in Fig. 5F.  At rest, the suspension is at equilibrium, and the contacts between the 

reference and test particles are uniformly distributed.  Note that particles are soft, and the 

interparticle distance is smaller than twice the nominal radius of the particles.  As the strain 

increases (around 0.1  ), we observe an accumulation of particles along the upstream 

compressive quadrant.  In contrast, a depletion of particles is seen along the extension axis (Fig. 

6A).  The anisotropy increases with the strain (Fig. 5B) and becomes maximum at the strain 

p  where the stress overshoot takes place (Fig. 5C).  After the overshoot, the anisotropy 

decreases, and concomitantly the stress is relaxed and reaches a steady state.  This is evident by 

comparing the pair correlation functions in Fig. 5B and Fig. 5D, corresponding to points B and 

D in Fig. 5F, which have the same stress values but different locations on the stress-strain curve.  

In SI.2, we show the pair distribution functions of the suspensions at steady state when the shear 

rate is varied from 10-9 to 10-4. The significant anisotropy that persists at steady state is central 

to the nonlinear rheology of SPGs [62]. 
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FIG. 5.  (A-D) Two-dimensional pair distribution function  g r  obtained at different strains, (E) 

spherical harmonics coefficient  2, 2g r R  at different strains corresponding to (A-D), and (F) shear 

stress 
*E  as a function of the strain.  The equilibrium center-to-center distance between particles 

(denoted by the dashed arrow) is determined from the peak of the pair distribution function at rest.  The 

volume fraction is 0.8   , and the shear rate is 
* 410s E    %& & .  The data are obtained with 104 

particles.   

 

To capture the distortions of the pair correlation function in a more quantitative way, 

we expand ( )g r in spherical harmonics, and we compute the coefficient  2, 2g r  at different 

strains as explained in the simulation section II (Fig. 5E).   2, 2g r  gives access to the shear 

stress. Other components that are relevant to the normal stress differences are presented and 

discussed in SI.3.  Initially, at rest  2, 2g r  is close to zero with some minor fluctuations (data 

not shown).  As the strain increases to 0.1   (point A in Fig. 5F), a negative minimum and a 

positive maximum appear.  The negative minimum corresponds to the accumulation of particles 

around the compression axis is observed, whereas the positive maximum is associated with the 
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depletion of particles around the extension axis.  The minimum is located at a distance 

1.85mr R  that is only slightly smaller than the center-to-center distance 1.88mr R  between 

particles at equilibrium, and the maximum is seen at larger r  values.  Increasing the strain to  

0.2   (point B in Fig. 5F), essentially changes the values of the maximum and the minimum, 

revealing a slight decrease of anisotropy whereas their positions are not much affected.  At the 

overshoot 0.32p   (point C in Fig. 5F), the position of the minimum shifts to a smaller 

distance, i.e., particles are more compressed, and the magnitudes of the maximum and mininum 

corresponding to accumulation and depletion, i.e., the anisotropy, decrease.  An increase in the 

strain up to steady-state (point D in Fig. 5F) leads to a further decrease in the magnitude of the 

minimum and maximum peak.  These results show that the microstructural changes during 

startup flow at high shear rates result from an interplay between anisotropy due to the 

accumulation-depletion of contacts and compression.  The static yield stress appears to be the 

point where the anisotropy is maximum before being relaxed as the particle contacts are 

redistributed. . 

Dynamic microstructure at low applied shear rates: 

When the applied shear rate is small, the static yield stress is weak, andthe stress buildup is 

monotonic   The two-dimensional pair correlation functions in the flow-gradient plane for 

different strain values when a shear rate of 910   is applied are shown in Figs. 6A-E. The 

computations now use a box containing 106 particles.  At low strain values, the contacts are 

isotropically distributed around the reference particle (Fig. 6A), while shearing the SPGs leads 

to anisotropy as above,  although it is weaker than at high shear rates reflecting the fact that the 

stress amplitude is much smaller (Fig. 6B).  Again the anisotropy is maximum at the stress 

overshoot (Fig. 6C) and decreases as steady-state is approached (Fig. 6D). The variations of the 

 2, 2g r  coefficient are shown in Fig. 7E.  As before  2, 2g r exhibits a negative minimum and 
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a positive maximum whose absolute magnitude steadily decreases as the strain is increased.  

The position of the peaks does not vary significantly indicating that compression is much 

weaker than at high shear rates.  This further confirms that the existence of the static yield stress 

results from the interplay between anisotropy and compression.  Furthermore, we also observe 

the fluctuations in  2, 2g r  decrease substantially when the shear flow reaches its steady-state 

value.   

 

FIG. 6.  (A-D) Two-dimensional pair distribution function  g r  obtained at different strains, (E) 

spherical harmonics coefficient  2, 2g r R  at different strains corresponding to (A-D), and (F) shear 

stress 
*E  as a function of the strain.  The equilibrium contact distance between particles (denoted by 

the dashed arrow) is determined from the peak of the pair distribution function at rest.  The volume 

fraction is 0.8  , and the shear rate is 
* 910s E    %& & .  The data are obtained with a 106 particles.   

 

Contact number and particle overlap 

To further investigate changes in microstructure during yielding, we have computed the  

number of contacts cN , overlap deformation   per particle  , and the elastic energy  as a 



20 
 

function of the strain at different shear rates.  To determine Nc, we consider that two particles 

are in contact if the center-to-center distance is less than the sum of their radii. The results for 

0.8   are presented in SI.4.  Both the number of contacts and the overlap deformation of SPGs 

follow normal distributions (see Figs. S4A-D). The contact number distributions are broad with 

a standard deviation of about 2.0.  At low shear rate, the standard deviation is equal to 2.35 and 

is independent of the strain.  The same trend is observed for the overlap distribution functions 

(see Figs. S4C-D. They are broad with a standard deviation of about 0.02. At large shear rates, 

the distributions become wider when the strain increases. At low shear rates, the standard 

deviation of the distribution is about 0.018 independently of the strain value.  

  

The average number of contacts, Nc, as a function of the strain  is represented in Figs 

7A-C for 0.7, 0.8, and 0.9.  At the lowest volume fraction 0.70   (Fig. 7A), when the 

applied shear rate is large ( 410  ), cN  shows a minimum at the yield strain 
p  where the 

stress is maximum, and then reaches a steady-state value.  When the shear rate decreases, the 

number of contacts increases, and the minimum becomes shallower.  Increasing the volume 

fraction leads to a weaker minimum and a larger number of contacts per particle (Figs. 7B-C).  

These results show that the accumulation-depletion mechanism leads to a decrease in the 

average contact number cN . 

Let us turn our attention towards to the variations of the average overlap deformation 

per particle,  , as a function of strain   (Figs. 7D-F).  At high shear rates,   exhibits a weak 

overshoot before decreasing to its steady-state value.  The overshoot disappears as the shear 

rate decreases, and it is weaker when the volume fraction increases.  Interestingly the overshoot 

occurs for a strain larger than p , supporting our previous finding that the compression of the 
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particles, which increases the overlap distance,  is linked to particle redistribution and ultimately 

to the relaxation of the stress to its final value.   

Finally, the elastic energy per particle is shown as a function of the strain   in Figs. 7G-

I.  Given that the elastic energy is a function of the average number of contacts and of the 

average overlap, it also exhibits an almost monotonic behavior with very weak overshoots 

compared to those seen in the shear stress and the normal stress differences as a function of   

in Fig. 3 and Fig. S1, respectively.   

 

FIG 7.  Evolution of (A-C) the average number of contacts cN , (D-F) the average overlap deformation

  per particle, and (G-I) the elastic energy scaled with the volume 
*U E  as a function of   at different 

volume fractions of 0.7  , 0.8  , and 0.9  .  The statistical distributions of the overlap parameter 

and contacts at different strains for low and high shear rates are presented in Figs. S4A-D. 

 

III. C. Effect of mechanical history on start flow properties  
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The results presented so far are computed starting from fully equilibrated suspensions where 

each particle is at rest and subjected to a net-zero force.  This situation is rarely encountered in 

experiments where suspensions experience a complex mechanical history, the effect of which 

slowly relax in the course of time.  Two important phenomena have been reported in this 

respect: the capacity of SPGs to store residual stresses [64, 65] and physical aging [38, 77].  In 

order to start from a reproducible mechanical state, SPGs are usually presheared above the yield 

point and kept at rest for the so-called waiting time, tw, before any further measurement.  We 

reproduce the same protocol in our simulations by pre-shearing SPGs at different volume 

fractions ( 0.7, 0.8  , and 0.9) at a rate of 610  , switching off the pre-shear flow for 

different waiting periods ( * 6 82 10 2 10w st E      ), and finally turning on the shear flow.  

Here we present results for the rate 610  , which corresponds to a shear rate value commonly 

used in experiments [64].  The evolution of the shear stress is shown in Figs. 8A-C.  For all 

volume fractions, the shear stress shows an overshoot just as found in the previous section, but 

now both the magnitude and the location of the overshoot depend on the waiting time.  The 

peak magnitude, i.e., the static yield stress, increases with the waiting time.  In the literature, 

this observation has been attributed to aging [22, 38, 39].  At short waiting times the location 

of the stress overshoot, i.e., the static yield strain, is slightly shifted to smaller strains, but later 

on, it increases and approaches to that for relaxed configurations (i.e., *

w st E    ).  

Furthermore, the initial response of the stress is shifted upward compared to the data obtained 

from the relaxed structure.  This stress increase represents the contribution of the residual stress 

stored inside the suspension during the preshear flow, which has not relaxed during the waiting 

period.  The same behavior is found when SPGs are sheared at high shear rates (see SI.5) 
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FIG. 8.  Shear stress as a function of strain in SPGs aged over different waiting times. The  

volume fractions are:  (A) 0.7  , (B) 0.8  , and (C) 0.9  ; the applied shear rate is  
* 610s E    %& & .   

 

We now analyze these results from a microstructural perspective using the variations of 

the coefficient   2, 2g r  already used earlier. Fig. 9A represents the variations of  2, 2g r at the 

end of the waiting period for different values of the waiting time.  When the waiting time is 

short,   2, 2g r  has a negative minimum and a small positive maximum, confirming that the 

accumulation-depletion anisotropy created during preshear persists over the waiting period.  

This anisotropy is responsible for the residual stress detected in the startup flow response.  As 

the waiting time becomes longer,  2, 2g r  fluctuates around zero and its minimum becomes 

smaller, expressing the gradual relaxation of the residual stress. Fig. 9B represents the variations 

of  2, 2g r  during startup flow ( 610  ) for a strain 
p corresponding to the location of the 

overshoot.  2, 2g r  shows a negative minimum and a positive maximum as expected.  

However, the depth of the minimum of  2, 2g r  is monotonically correlated with the age of the 

SPG as seen in the inset of Fig. 9B.    
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FIG. 9.  Spherical harmonics coefficient  2, 2g r  (A) at the end of the waiting time after pre-shearing 

the SPGs (B) at the stress overshoot obtained at different waiting times.  The volume fraction is 0.8 

, and the shear rate is 
* 610s E    %& & . 
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IV.  Discussion 

IV.A.  Scaling properties of the static yield strain and static yield stress 

In this section we show that the dimensionless shear rate 0̂  s G& & , where 0G  is the low-

frequency modulus and s  the solvent viscosity, is the relevant variable that controls the values 

of the static yield strain  p  and static yield stress p  shown in Fig. 4.  The low-frequency 

modulus is determined from Small Amplitude Oscillatory Shear Rheology computations as 

described in Section II. The dimensional shear rate 0̂  s G& &  characterizes the competition 

between the advection time 
1 &  and the local relaxation time 0s G .  It was first introduced to 

unify the flow properties of SPGs [6, 63, 71, 79] and recently extended to rationalize their 

particle scale dynamical properties [68].  Fig. 10A shows that this variable successfully 

collapses the static yield strain values  p  computed over a broad range of shear rates for 

different volume fractions.  The master curve follows the power-law variation 0.30 0.05ˆ~p    at 

high shear rates and tends to the limit 0.1 at low shear rates; it is well described by the Herschel-

Bulkley relationship of the form:      0.3 0.05ˆ0.1 0.02 1.00 0.12p 


    .  Power-law 

relationships have also been found for the static yield strain  p of polymer melts [55, 79] -

 
1 3

p R &;  for 1R & , where 
R is the Rouse relaxation time of the chain, and  

1 5

p R &; for 

1R & - as well as for carbon nanotubes/poly(ethylene oxide) composites [80]  where 
1 4

p &; . In 

polymeric materials, stress overshoots have a different physical origin, i.e., the segmental orientation of 

chains in shear flow, which is fundamentally different from the accumulation-depletion mechanism at 

work in SPGs.  Fig. 10B shows the values of the static yield stress p  normalized by the 

dynamical yield stress y  plotted against ̂&.  The values of y are obtained from the 

extrapolation of the flow curves to zero shear rate (see SI.6).  This combination of variables 
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successfully collapses the data computed for different volume fractions.  Another important 

result here is that the stress overshoot 
p  scales with the dynamical yield stress 

y .  The value 

of 
p y   increases from a value just above unity and follows an HB relationship according to 

     0.55 0.1ˆ1.2 0.3 350 25p y  


    , which is very close to the HB variations describing the 

flow curves of these materials [63].  At very low shear rates, the fact that 
p y   tends to unity 

indicates that there is no stress overshoot and that yielding is monotonic without static yield 

stress. 

 

FIG. 10.  Master curves of (A) p  and (B) the rescaled stress overshoot p y   as a function of the 

reduced shear rate 0
ˆ /s G  .  The HB fits for p  and p y   are given by: 
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     0.3 0.05ˆ0.1 0.02 1.00 0.12p 


     and      0.55 0.1ˆ1.2 0.3 350 25p y  


    , respectively.  The 

green dashed line shows the lowest shear rate above which simulations can detect a stress overshoot. 

 

IV.B.  Comparison with experiments 

In the literature there exist a few sets of data that are available for comparison with our 

predictions.  We have revisited results obtained for dense suspensions of thermosensitive 

colloids consisting of a polystyrene core covered with a shell of crosslinked poly(N-

isopropylacrylamide) [40, 43],  star-like micelles [43], and poly(ethylene oxide)–protected 

silica particles [38].  All these systems can be viewed as being SPGs where particles are in 

contact.  We have also used data obtained for entropic glasses of core-shell polystyrene/ poly(N-

isopropylacrylamide) colloids [14, 18].  The static yield strain 
p  and the reduced static yield 

stress /p   extracted for these different systems from [14, 18, 38, 40, 43] are plotted against 

the reduced shear rate 0
ˆ

s G & &  in Figs. 11A-B, respectively.  Details about the data 

reduction method are given in SI.7.  It is important to note that the data replotted from the 

literature may be affected by significant uncertainties due to unspecified inertia effects at high 

shear rates, short waiting times, and other experimental issues.  Both the static yield strain 
p  

and the reduced static yield stress /p y   agree reasonably well with the simulation predictions 

although they do not perfectly collapse onto the master curves.  For the static yield strain
p  the 

discrepancies are the highest at high shear rates where inertia contributions become critical.  It 

is interesting to note that the values of the static yield strain and static yield stress of hard sphere 

glasses closely match our predictions although their rheology obey to a physics different from 

of SPGs.   
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FIG. 11.  Comparison of simulations and experimental data:  master curves of (A) p  and (B) rescaled 

stress overshoot p y   as a  function of the reduced shear rate 0
ˆ /s G  .  Simulation results are 

shown with open symbols.  

 

IV.C.  Connection with particle scale dynamical properties 

In a recent paper, using our particle dynamics simulations, we have shown that the macroscopic 

flow properties of SPGs are intimately related to their non-affine microscopic dynamics [68].  

At very short times, particles rattle in the cages formed by their neighbors against which they 

collide and rebound elastically.  Particles move locally in their cages during the residence time 
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ct  (or equivalently the residence strain c ct  & ) after which they hop on another position.  At 

smaller time scales, the persistence time dt  (or equivalently the persistence strain d dt  & ) of 

the net elastic force experienced by the particles during collisions constitute the elementary 

clock that controls the entire sequence of dynamical processes taking place in SPGs. The 

determination of d  and 
c  is described in Section II.  The reader is also referred to our recent 

study [68] for details of calculations and a discussion on the importance of these two timescales 

in determining the macroscopic rheology of SPGs.  Coming back to the startup flow problem, 

the stress response at small strain is controlled by the SPG elasticity so that particle 

displacements must be extremely localized.  However close to the stress overshoot, particle 

scale rearrangements are expected to occur to relax the extra accumulation-depletion anisotropy 

generated at short times and induce additional particle compression.  In the following, we 

examine the relation between the static yield strain 
p  and particle scale dynamical properties. 

In Fig. 12A, we plot the values of 
p  against the persistence strain d  associated with 

elastic collisions  for the three volume fractions investigated.  The data collapse onto a unique 

master curve, thereby supporting that d  is the elementary clock of the dynamical processes 

occurring in SPGs [68]. A linear relation is observed at high shear rates where both quantities 

obey to power-law variations with similar exponents ( 0.3ˆ
p   from Fig. 12.A and 

0.24ˆ
d   

from Fig. 4B in Ref. [68]).  At low shear rates, 
p  approaches to the constant value 0.1 whereas 

ˆ
d   vary linearly, so that the master curve deviates from a linear relationship.   

From the results discussed in the microstructure section III.B, we anticipate that the 

stress overshoot marks the onset of large-scale rearrangements so that it must be correlated to 

the structural relaxation strain that characterizes cage escape.  In Figure 12B, we plot the static 

yield strain p as a function of the residence strain c .  At small shear rates, p  tends to 0.1 
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and  c has a limiting value of 0.13 [68]; as the shear rate increases p  and c  increase and 

collapse onto a master curve for all the studied volume fractions.  We note however that 

consistently the values of p  are smaller than the cage relaxation strain amplitudes c , which 

suggests that the stress overshoot might not precisely coincide with the onset of cage escape 

but instead occurs at lower strain amplitudes.  

 

FIG. 12.  Strain corresponding to the stress overshoot p  as a function of (A) the persistence strain of 

the contact elastic forces during particle collisions, 
d  and (B) residence strain or cage relaxation strain 

c .   
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V. Summary and Conclusions 

In this study, we have used particle simulations to study the startup flow of SPGs. Two different 

macroscopic behaviors have been described. When the applied shear rate is large, the variations 

of the shear stress, first and second normal stress difference as a function of the strain are 

characterized by the presence of overshoots revealing the existence of a static yield point. The 

overshoots are followed by a decrease of the rheological properties to their steady-state values. 

At very low shear rates and high volume fractions the overshoots disappear and the stresses 

increase monotonically up to their steady-state value. These two regimes can be understood in 

a qualitative way in terms of the competition between cage rearrangement and flow advection. 

At high rates, the duration of rearrangements is much larger than the characteristic time of the 

flow. As a result, the cages deform elastically and store elastic energy until they can no longer 

sustain the accumulated stress and break, releasing the stored energy. On the opposite, at low 

shear rates, cages have time to deform so that the stresses are continuously relaxed through 

local deformation. 

The transient stress response is sensitive to the mechanical history of SPGs as observed 

experimentally in a variety of materials. The magnitude of the static yield stress increases with 

the time that SPGs are kept at rest before applying the startup flow. The microstructure is 

weakly affected. We have shown that the history-dependence of the transient rheology of SPGs 

is associated with the capacity of SPGs to store residual stress and experience physical aging. 

The microstructure exhibits dramatic changes revealing the physical mechanisms at 

work. The buildup of the stress is associated with structural anisotropy in which particles 

significantly accumulate along the compression axis and deplete along the extension axis. At 

high shear rates, where a yield point exists, the pair distribution functions of SPGs exhibit 
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maximum anisotropy at the stress overshoot, which is relaxed after additional particle 

compression. At low shear rates, there is a mild compression of the particles, which is reached 

at very small strain values, followed by a monotonic increase of particle accumulation in the 

compression direction. It is interesting to note that this interplay between 

accumulation/depletion and particle compression is also central to the relaxation of SPGs after 

flow cessation.  During stress relaxation, compression is rapidly released by elastic recoil, 

whereas anisotropy persists over a long period of time and is responsible for residual stresses 

[64,65].  This shows that the nature of the deformation field to which SPGs are subjected control 

the transient responses.  

Startup flow simulations and experiments have already been used to investigate the 

yielding properties of colloidal gels [28, 36] and hard-sphere glasses [12-20]. It is thus 

interesting to confront our findings for SPGs to the existing literature. The transient yielding 

SPGs and hard-sphere glasses is characterized by a unique overshoot which is the signature of 

repulsive interactions arising from cage elasticity. This distinguishes these materials from 

colloidal gels which are characterized by double yielding due to bond rupture and cage breakup 

at low and high strains, respectively. SPGs and hard-sphere glasses have in common two 

important features: the absence of stress overshoot at low shear rates and the anisotropy of the 

pair distribution function between the compression (particle accumulation) and extension 

(particle depletion) directions. It is this anisotropy that controls the stress buildup, the maximum 

anisotropy being in coincidence with the stress overshoot. There is however, a fundamental 

difference between soft and hard particle glasses. In hard-sphere glasses, there are no contact 

interactions and the relaxation occurring after the stress overshoot is due to Brownian motion 

only. The accumulation in the compression region does not change much whereas the depletion 

is partly smoothed out by diffusion [12,19]. In SPGs, the large anisotropy observed at the stress 

overshoot is relaxed thanks to an additional compression of particles, both the compressive and 
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the extension directions being affected.  Thus in SPGs the capacity of particles to deform 

elastically plays an important role.   

To complete our multiscale understanding of yielding in SPGs, we have found a 

connection between the static yield strain 
p and the microstructural relaxation or residence 

strain 
c characterizing cage escape and the persistence of the contact interactions 

d . This 

shows that the evolution of the macroscopic rheology and microstructure are connected to the 

microscopic dynamics which is known to be controlled by non-affine particle motion. To draw 

a bridge with our recent work [68], we speculate that monotonic yielding behavior is associated 

with the intermittent regime at low applied shear rates where particles have enough time to relax 

back to a local position before the flow induces a new rearrangement.  On the contrary, the 

yielding behavior at high shear rates can be associated with the regime where particle yield 

continuously and never find local equilibrium positions. 

Several material properties, such as the softness of particles, solvent viscosity, strength 

of the flow, packing fraction, affect the magnitude of the overshoot.  Here we have shown that 

the variations of the static yield strain 
p and reduced static yield stress /p y   with the shear 

rates computed for different volume fractions collapse onto universal master curves when they 

are plotted against the non-dimensional shear rate of 
0s G& .  The same non-dimensional shear 

rate was used to rationalize the steady flow properties and the microscopic dynamics of SPGs 

in our previous works [68, 69, 81], confirming that the macroscopic rheology and microscopic 

dynamics of SPGs are driven by the competition between flow advection and cage deformation 

[81]. The variations of the reduced static yield stress /p y  versus the non-dimensional shear 

rate 0s G& are well represented by an Herschel-Bulkley form which is qualitatively similar to 

that describing the flow curve shown in SI.6. This similarity expresses that the peak overshoot 
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and the stress at steady-state are controlled by a unique physical mechanism, i.e. the anisotropy 

of the pair distribution function [62].  

We have found that the data available from the literature match our master curves, 

suggesting that our results are relevant for a great variety of systems including entropic hard-

sphere glasses once the appropriate scaling variables are chosen. These results call for a 

systematic experimental investigation of startup flow properties of a variety of jammed 

suspensions, which will be the topic of a future study.   
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Supplementary Material 

S1.  Transient behavior during startup flow of the first (A-C) and second (D-F) normal stress differences 

at different shear rates and volume fractions for suspensions with 104 particles. 

S2.  Two-dimensional pair distribution function  g r  computed at steady state for different applied 

shear rates.  The volume fraction is 0.8  .  The data are obtained with 104 number of particles.   

S3.  Spherical harmonics coefficients (A)  2,2g r R  and (B)  2,0g r R .  The volume fraction is 0.8 

, and the shear rate is * 410s E    %& & .  The data are obtained with 106 particles.   

S4.  (A and B) Contact number distributions and (C and D) overlap deformation distributions at shear 

rates of 
* 410s E   and 

* 810s E  , respectively.  The volume fraction of the suspension is 

0.8  . 

S5. Shear stress (
*E ) as a function of strain   in SPGs aged over different waiting times, with 

volume fractions of (A) 0.7  , (B) 0.8  , and (C) 0.9  , and  shear rate 
* 410s E    %& &  ?    

S6.  Determination of the dynamic yield stress from the flow curves and collapse of flow curves 

onto a generic master curve. 
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