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We investigate freely expanding liquid sheets made of either simple Newtonian fluids
or solutions of high molecular water-soluble polymer chains. A sheet is produced by
the impact of a drop on a quartz plate covered with a thin layer of liquid nitrogen that
suppresses shear viscous dissipation due to an inverse Leidenfrost effect. The sheet expands
radially until reaching a maximum diameter and subsequently recedes. Experiments
indicate the presence of two expansion regimes: the capillary regime, where the maximum
expansion is controlled by surface tension forces and does not depend on the viscosity,
and the viscous regime, where the expansion is reduced with increasing viscosity. In
the viscous regime, the sheet expansion for polymeric samples is strongly enhanced as
compared to that of Newtonian samples with comparable zero-shear viscosity. We show
that data for Newtonian and non-Newtonian fluids collapse on a unique master curve
where the maximum expansion factor is plotted against the relevant effective biaxial
extensional Ohnesorge number that depends on fluid density, surface tension, and the
biaxial extensional viscosity. For Newtonian fluids, this biaxial extensional viscosity is
six times the shear viscosity. By contrast, for the non-Newtonian fluids, a characteristic
Weissenberg number-dependent biaxial extensional viscosity is identified, which is in
quantitative agreement with experimental and theoretical results reported in the literature
for biaxial extensional flows of polymeric liquids.

DOI: 10.1103/PhysRevFluids.5.053602

I. INTRODUCTION

Over the last 15 years, the understanding of drop impact on solid targets has progressed
considerably due to high-speed imaging methods [1], allowing one to observe in real time the fate of
a drop upon impact under various experimental conditions and to probe a rich variety of phenomena,
including dynamics of sheets in the expansion and receding regimes, spatiotemporal evolution of the
thickness of the sheets [2,3], fingering instabilities [4–6], and fractures and production of satellite
droplets [7–9]. Concerning the nature of the impacting drops, mainly Newtonian fluids of different
viscosities have been investigated, although a few relevant studies with shear-thickening fluids [10],
shear-thinning fluids [11–17], yield stress fluids [18], or Maxwell fluids without shear thinning
[19,20]. Most studies have been performed on drops impacting a flat surface that can be smooth
or rough [21], horizontal or tilted [22], hydrophobic or hydrophilic [23]. Often, surfaces have a
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very large size compared to that of the drop such that the entire spreading event occurs on the
target [8,14,15,24–27], but targets of size comparable to that of the drops [2,3,16,28,29] or drops
impacting only partially a small target [30] have also been studied.

The complex interaction of a drop with a solid surface during drop collision may be removed
or at least significantly reduced by using repellent surfaces, which avoid a direct contact between
the liquid sheet and the solid target. Repellent surfaces include superhydrophobic surfaces [31], hot
plates above the Leidenfrost temperature [32,33] or sublimating surfaces [20,34]. Nevertheless, the
fact that shear viscous dissipation can be neglected during the expansion of the sheet after impact
does not mean that there is no viscous dissipation process. Indeed, biaxial extensional viscous
dissipation is dominant in freely expanding sheets. Surprisingly this has never been documented
to the best of our knowledge, except in a very recent paper [35], where the authors have attributed
an inhibition of a drop-substrate contact during drop impact to a large increase of the extensional
viscosity.

A possible reason for ignoring the biaxial extensional viscous dissipation is that for sheets
expanding completely on a solid surface, viscous dissipation should be dominated by shear. For
small targets however, both shear and biaxial extensional viscous dissipation processes may be
relevant: this is the goal of a future publication. In the present paper, only biaxial extensional viscous
dissipation is relevant as the sheet expands freely due to the inverse Leidenfrost effect discussed
below. In this work, we investigate the expansion dynamics of free sheets of a viscoelastic thinning
fluid produced upon impacting a single drop on a repellent surface in inverse Leidenfrost conditions,
and compare it to the respective response of Newtonian fluids. We demonstrate that accounting for
the viscous dissipation due to biaxial extensional viscosity during the expansion of the sheet is
crucially important. We provide a simple approach to evaluate the biaxial extensional viscosity of
thinning viscoelastic fluids, and finally propose a model to quantitatively account for the viscosity
dependence of the maximum expansion of sheets.

The paper is organized as follows. We first describe the materials and methods. We then show the
shear rheological properties of the viscoelastic fluids of interest and their behavior upon impact on a
repellent surface. Subsequently, we rationalize the results by accounting for the biaxial extensional
viscosity and by means of a simple scaling model. The main conclusions are summarized in the last
section.

II. MATERIALS AND METHODS

A. Materials

We investigate solutions of polyethylene-oxide (PEO) of high molecular weight (Mν =
8000 kDa) from Sigma-Aldrich. Several samples with concentration C between 10−3 wt% and
2 wt% are prepared by adding PEO powder, as received, to the appropriate volume of deionized
pure water, or mixtures of water and glycerol (20 wt%, 35 wt%, and 41.66 wt% glycerol), and leave
the solution under stirring at T = 25 ◦C for 24 h at least in the dark, until complete dissolution. Note
that, in order to enhance the visualization contrast, all PEO solutions are colored using a Nigrosin
dye (from Sigma-Aldrich) at concentration 0.025 wt%. The surface tension of high molecular
weight PEO solutions is independent of polymer concentration (γ = 62 m Nm−1) [36]. Pendant
drop experiments confirm that the addition of dye does not affect the surface tension of the final
solutions. In addition, in order to compare the behavior of viscoelastic polymer solutions with that
of simple fluids, we use two classes of Newtonian fluids, mixtures of water and glycerol and silicon
oils. Silicon oils, with shear viscosities from 5.2 to 1075 mPa s and an average surface tension of
20 mN/m [37], were purchased from Sigma Aldrich and used as received. Mixtures of water and
glycerol with concentrations ranging from 22 to 97.5 wt% glycerol are prepared, yielding shear
viscosities from 1.7 to 1910 mPa s (depending on the glycerol weight fraction and temperature),
densities from 1.05 to 1.25 g/ml, and an average surface tension of 65 mN/m (as measured with a
pendant drop setup).
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FIG. 1. Left: Schematic illustration of the impact experiments setup showing a drop falling on a liquid
nitrogen thin layer. The expansion event is recorded using two fast cameras allowing concomitant top and side
visualizations. Right: Adapted from Ref. [34], schematic of the inverse Leidenfrost effect at the origin of the
shear free expansion.

B. Methods

1. Drop impact experiments

To substantially eliminate the role of friction or adhesion with the solid surface on the impact
dynamics, we work under inverse Leidenfrost conditions. This is achieved by impacting a drop at
ambient temperature T (between 18.5 and 22.5 ◦C) on a polished quartz slide covered with a thin
layer of liquid nitrogen (N2) at T = −196 ◦C (see Fig. 1). The setup is described elsewhere [20].
Upon impact of the drop, a vapor cushion forms at the liquid interface due to the evaporation of N2,
providing a unique scenario of nonwetting slip conditions that eliminates shear viscous dissipation
[34,38]. The rare cases where the impacting drop comes in direct contact with the surface with
instantaneous freezing are eliminated, so the nitrogen vapor film keeps the liquid drop separated
from the surface for all the reported experiments. Before each impact, the quartz slide is first cleaned
by blowing N2 gas, and then a thin layer (typical thickness 50 nm as measured by ellipsometry)
of liquid N2 is deposited on the slide. The liquid is injected from a syringe pump with a flow
rate of 1 ml/min through a needle placed above the target, from the side as shown in Fig. 1. The
diameter of the falling drop is constant, d0 = 3.9 ± 0.2 mm, as measured by image analysis and
confirmed from the drop mass. The drop falls from a height h = 91 cm, yielding an impact velocity
v0 = √

2gh = 4.2 ms−1(g is the acceleration of gravity).The drop impact is recorded from the top
[Fig. 2(a)] using a high-speed camera (Phantom V 7:3) operated at 6700 frames/s with a resolution
of 800 × 600 pixels2. The angle between the camera axis and the horizontal plane is fixed to
about 10◦. A second high-speed camera (Phantom miro M310), operated at 3200 frames/s with a
resolution of 1280 × 800 pixels2, is eventually used simultaneously to record a side view [Fig. 2(b)].

2. Image analysis

The time evolution of the sheet size is measured with ImageJ software by analyzing top-view
images. We first subtract the background image from the expansion movie and highlight the rim by
a binary thresholding. This allows us to determine the sheets contour and measure its area A. Note
that A does not include the fingers emanating from the rim of the expanding film; they may appear
for low viscous samples (Fig. 2) but do not develop for more viscous ones (see Fig. 4 below). An
apparent sheet diameter is simply deduced: d =

√
4A
π

. The results are obtained by averaging for each
sample the time evolution of the sheet diameter from three different experiments. Note, however,
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FIG. 2. (a) Top-view and (b) side-view snapshots of the maximum expansion of a low viscous Newtonian
sample (22wt% glycerol-water mixture), revealing that the effective diameter dMax from the top view
underestimates the maximum expansion of the sheet �Max. (c) Relative side-view correction effect (in %)
as a function of shear viscosity of Newtonian glycerol-water. The line is an empirical fit of the data points
(symbols).

that corrections have to be performed for low-viscosity samples. Indeed, side-view images reveal
the occurrence of a so-called corona splash [Fig. 2(b)] [8], for low viscous Newtonian samples. This
implies that the routine standard analysis using top-view images would underestimate the maximum
expansion diameter. The side view allows one to evaluate the actual diameter of the sheet [see �Max

in Fig. 2(b)]. The fractional underestimation, defined as �Max−dMax
dMax

, with dMax the maximum diameter
measured from top-view images, is plotted as a function of the samples zero-shear viscosity, η0, in
Fig. 2(c). We find that the fractional underestimation decreases logarithmically with η0, from about
22wt% for the lowest viscosity sample and vanishes for η0 � 100 mPa s. Hence, in the following,
quantitative corrections are made for the maximum expansion diameter based on the empirical
logarithmic law. For samples with a shear viscosity larger than 100 mPa, the sheet remains flat
and no correction is needed.

3. Rheology

Linear viscoelastic and steady shear viscosity measurements are performed with a MCR302
stress-controlled rheometer (Anton Paar, Austria), operating in the strain-control mode and equipped
with a stainless steel cone and plate geometry with a diameter of 50 mm, cone angle of 1◦ and
truncation of 101 μm. Temperature control (±0.2 ◦C) is achieved by means of a Peltier element.
The linear viscoelastic spectra are obtained by applying a small amplitude sinusoidal strain, such
that data are obtained in the linear regime (γ = 10%), varying the angular frequency, ω, from
100 to 0.01 rad/s, and measuring the storage, G′(ω), and loss, G′′(ω), moduli. The complex

viscosity is calculated from the linear viscoelastic spectra as |η�(ω)| =
√

[G′2(ω)+G′′2(ω)]
ω

. The steady
shear viscosity, η(γ̇ ) is measured by applying a ramp of steady shear rate varying from 0.01 to
1000 s−1.
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FIG. 3. (a) Frequency dependence of the storage (G′) and loss (G′′) moduli, and (b) complex viscosity as
a function of frequency (open symbols) and steady shear viscosity as a function of shear rate (filled samples),
and fits (lines) using the Cross equation [Eq. (1)], for samples with different PEO concentrations C as indicated
in the legend. (c) Evolution with C of the terminal relaxation time and (d) of the zero shear viscosity.

III. RESULTS

A. Shear rheology

Figure 3(a) shows the dynamic moduli as a function of oscillatory frequency for aqueous polymer
solutions with various concentrations. For C > 0.6 wt%, the crossover of G′ and G′′ marks a
characteristic relaxation time τ0, which is the best estimate for the onset of the terminal regime.
Figure 3(c) shows that τ0 ∼ C0.44 s. This scaling exponent is in the range that have been reported
for high molecular weight PEO aqueous solutions [39]. Results for samples prepared with mixtures
of water and glycerol are consistent with those obtained for pure water samples [Fig. 3(c)].

The zero shear viscosity, η0, varies by more than 5 orders of magnitude from 1 to 105 mPa s
for the samples investigated. The variation of η0 with polymer concentration, C, reveals the two
expected regimes [Fig. 3(d)]: an unentangled regime for C < 0.27%, where the viscosity increases
slowly with the polymer concentration, and an entangled regime at larger concentration, where
η0 ∝ C4.7, in agreement with predictions by scaling arguments based on the tube model [40].

Figure 3(b) depicts the complex viscosity, |η�(ω)| as a function of frequency, along with the
steady shear viscosity, η(γ̇ ) as a function of shear rate, γ̇ . The nice collapse of the dynamic and
steady data validates the Cox-Merz rule [41]. We find that all samples are strongly shear thinning and
that an empirical fit by means of the Cross model provides a good description of the shear-thinning
behavior of PEO solutions [continuous lines in Fig. 3(b)] [42]:

ηs(γ̇ ) = η∞ + η0 − η∞
1 + (kγ̇ )n

. (1)
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FIG. 4. Snapshots taken at different times, as indicated, during the expansion and retraction of the sheet
for (a) a Newtonian silicon oil with shear viscosity η0 = 658 mPa s; maximum expansion reached at time
tmax = 5.22 ms and (b) a PEO solution with C = 0.6wt% and η0 = 628 mPa s; maximum expansion reached
at time tmax = 5.02 ms. The bar sets the scale.

Here η∞ is the viscosity at very large shear rate that we set equal to the solvent viscosity
(water or water-glycerol mixture), η0 is the zero-shear viscosity [plotted in Fig. 3(d)], n is the
shear-thinning exponent, and the parameter k is the inverse of a critical shear rate that delimitates
a Newtonian regime from a shear-thinning regime. We find that the shear-thinning exponent n
increases with increasing C from 0.59 to 0.85. Moreover, for all concentrations the fitting parameter
k is monotonically increasing with C, similarly to the characteristic relaxation time τ0, and it marks
the onset of shear thinning.

B. Drop impact experiments

Once hitting the repellent surface, the drop expands freely in air until reaching a maximum
expansion. It then retracts because of surface tension. This corresponds to an an axisymmetric
biaxial extensional flow. The overall behavior is illustrated in Fig. 4, which depicts snapshots of
the drop after its impact for a PEO solution with C = 0.6% (η0 = 628 mPa s) and for a Newtonian
sample of comparable zero-shear viscosity (η0 = 658 mPa s). The two samples display strikingly
different behavior: the viscoelastic fluid drop expands much more than the Newtonian drop and
moreover forms a thicker rim. More quantitatively, we show [Figs. 5(a) and 5(b)] selective raw data
for the time evolution of the effective sheet diameter normalized by the original drop, d

d0
, for PEO

solutions at different concentrations and Newtonian liquids (here silicon oils, but water-glycerol
mixtures exhibit the same behavior) with different viscosities. The origin of time is chosen at the
time when the drop hits the liquid nitrogen layer. Expansion and retraction regimes are shown,
yielding a bell shape for the curves. We note that the curves for the viscoelastic fluids are very
symmetric as opposed to the ones for the more viscous Newtonian fluids, where a very long
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FIG. 5. Time evolution of the sheet diameter normalized by the initial drop diameter for (a) PEO solutions
with different concentrations and (b) silicon oils with different shear viscosities, as indicated in the legends.
The origin of the time is taken at the drop impact.

retraction regime is measured. These findings deserve deeper investigations in the future, but in
the following, we focus on the maximum expansion diameter dMax.

For a biaxial extensional flow,during the expansion of free liquid sheets after impact on a
repellent surface, the relevant viscosity is the biaxial extensional viscosity defined as ηB = σrr−σzz

ε̇
,

where ε̇ is the strain rate, and σrr and σzz are the stress tensor components in cylindrical coordinates.
For a Newtonian fluid the constant biaxial extensional viscosity ηB = η0

B = 6η0, where η0 is the
zero-shear viscosity and 6 is the Trouton ratio [43]. As a first-order analysis aiming at rationalizing
the expansion dynamics of sheets of Newtonian and thinning fluids, we consider the maximum
expansion factor, dMax/d0, with d0 the initial drop diameter and plot [Fig. 6(a)] this quantity as a
function of the biaxial extensional viscosity η0

B. Note that the shear viscosity is measured at the room
temperature of the impact experiment; this is of particular importance for water-glycerol mixtures
which exhibit a strong temperature dependant viscosity [44]. Similarly to findings for Newtonian
fluids impacting a small solid target [19], two regimes are observed for both polymer solutions and
Newtonian fluids. At low η0

B a capillary regime prevails, where the maximum expansion is mainly
driven by a balance between surface tension forces and inertial forces, with viscous dissipation being
negligible. Hence, this regime is characterized by a plateau. By contrast, in the viscous regime at
higher η0

B, dMax decreases monotonically with increasing viscosity.
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FIG. 6. (a) Maximum diameter of the sheet normalized by the initial drop diameter as a function of the
biaxial extensional viscosity, and (b) normalized maximum expansion factor as a function of the biaxial
extensional Ohnesorge number, for PEO solutions and for Newtonian liquids.

To get further insight into the observed behavior, we use the normalized maximum expansion
factor, d̃ , adopting the same definition as in Refs. [12,19]:

d̃ = dMax

dcap
Max

, (2)

where dcap
Max is the maximum expansion diameter in the capillary regime (at low viscosity). This

normalized quantity allows us to compare drops with different initial sizes and different surface
tensions. In addition, to account for different surface tensions for different samples, data are plotted
against the biaxial extensional Ohnesorge number, [OhB0], the ratio of biaxial extensional viscous
forces to inertial and surface tension forces:

OhB0 = η0
B√

ργ d0
(3)

with ρ the sample density and γ the surface tension. Figure 6(b) shows the evolution of d̃ with
OhB0 for both polymer solutions and Newtonian fluids. The data for the two types of Newtonian
samples overlap nicely onto a master curve and exhibit a capillary regime (for OhB0 � Ohc

B0 = 2)
characterized by a plateau, followed by a biaxial extensional viscous dissipation regime. We find
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FIG. 7. Normalized maximum expansion factor as a function of the effective biaxial extensional Ohnesorge
number for polymer solutions and for the two classes of Newtonian samples. The thin continuous line is the
best fit with Eq. (11), and the dashed lines are used to evaluate error bars on the fit parameter.

that for the thinning fluids, the onset of the viscous regime takes place at approximatively the
same critical biaxial extensional Ohnesorge number Ohc

B0 as for Newtonian liquids. Interestingly,
however, d̃ decreases much more gradually with OhB0 as compared to Newtonian fluids in the
viscous regime. This clearly suggests the importance of a biaxial extensional thinning of the polymer
solutions in the viscous dissipation regime. In the next section, we provide a rationalization for the
biaxial extensional expansion dynamics of sheets produced with Newtonian and non-Newtonian
fluids.

IV. DISCUSSION

A. Rationalization of biaxial extensional thinning

From the data of Fig. 6(b), one can easily define an effective biaxial extensional thinning viscosity
ηshift

B for polymer samples belonging to the viscous regime (OhB0 > Ohc
B0) by shifting horizontally

the experimental data point so that they fall on the master curve found for Newtonian samples.
The shifted values are discussed in Fig. 9 below. No shift is performed in the capillary regime
(OhB0 < Ohc

B0) since viscous dissipation is not relevant. Doing so we build a master curve (Fig. 7)
for the maximum expansion d̃ as a function of OhThin

B for all types of samples, where the effective
biaxial extensional Ohnesorge number OhThin

B = OhB0 for Newtonian samples and viscoelastic

thinning samples in the capillary regime and OhThin
B = ηshift

B

η0
B

OhB0 for visoelastic thinning samples
in the viscous regime. Below we rationalize the shifting of Fig. 7 and the use of biaxial extensional
viscosity of non-Newtonian fluids.

1. Determination of the pertinent strain rate

Experimentally, measuring properly the biaxial extensional viscosity is a challenging task,
especially for relatively low viscosity fluids such as the present polymers [45–51]. In order to
rationalize ηshift

B , the first step is to properly account for the deformation rate experienced by sheets
during their expansion in air. Here we provide an estimate.

The effective strain rate, defined as ε̇ = 1
d

∂d
∂t , is not constant in the expansion regime, but

decreases with time and vanishes at maximum expansion (Fig. 8). Note that the film expansion is a
time-dependent problem, but here we focus on the maximum diameter (end of expansion process)
and measure the average rate experienced by the sheet during the expansion. The average value for
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FIG. 8. Evolution of the expansion strain rate as a function of the sheet radius during its expansion
for aqueous PEO solutions at different concentrations, as indicated in the legend. Inset: Average strain rate
calculated according to Eq. (4) as a function of concentration. Error bars represent the standard deviation from
three different experiments.

the strain rate in the expansion regime is then calculated as

ε̇av =
∫ rMax

0 rε̇ dr∫ rMax

0 r dr
. (4)

Here rMax = dMax
2 is te radius of the sheet at its maximum expansion.We get an average strain rate

for each solutions that it is used for the rest of the analysis. Note, however, that within experimental
errors (�15% as shown in the inset of Fig. 8), the effective strain rate does not vary significantly with
concentration. Indeed, we obtain a value of 338 ± 49 s−1 by averaging over all samples, including
the PEO solutions prepared in glycerol-water mixtures.

2. Biaxial extensional viscosity

Given the difficulty in obtaining reliable experimental data for the biaxial extensional viscosity
ηB(ε̇) with our samples, we attempt at providing reasonable estimations To this end, we rely on
two pioneering experimental works for the measurements of the biaxial extensional viscosity of
viscoelastic solutions [52,53], where similar scaling have been found in spite of using different
techniques and different samples: wormlike micelles in Ref. [52] and concentrated polymer
solutions in Ref. [53]. At low Weissenberg numbers (Wi = ε̇τ0 < 1), i.e., for rates lower than the
inverse of the terminal relaxation time, τ0, the biaxial extensional viscosity is independent of the rate
and follows the expectation for a Newtonian fluid: ηB = η0

B = 6η0 with η0 the zero-shear viscosity.
By contrast, when Wi > 1, the biaxial extensional viscosity decreases with rate, ηB ∼ ε̇−p with a
thinning exponent p = 0.5 [53]. This scaling has been also predicted by Marrucci and Ianniruberto
[54] using a tube-based model for polymer melts hence, pointing out the universality of the biaxial
extensional thinning behavior.

Based on the similar linear viscoelastic response for the PEO solutions and those investigated
in Refs. [52,53], we expect our samples to exhibit a similar behavior for the biaxial extensional
viscosity as a function of expansion rate. Thus, for each impact experiment in the viscous regime, we
define an effective Weissenberg number as Wieff = τ0ε̇av, where τ0 is given by linear shear rheology
measurements for the data showing crossover between G′ and G′′ and extrapolated, according to
the power law presented in Fig. 3(c), for data without the crossover (0.5wt% and 0.6wt%); ε̇av is
measured from experiments [Fig. 8(b)]. The effective biaxial extensional thinning is characterized
by the experimental data points (Wieff , ηshift

B ), where ηshift
B are obtained from Fig. 7. We show in Fig. 9
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is obtained with a thinning exponent of −0.5 in agreement with theoretical predictions (see text). The gray
zone highlights the −0.5 slope.

the variation of the normalized effective biaxial extensional viscosity of PEO solutions ηshift
B /(6η0)

as a function of the effective Weissenberg number Wieff obtained from drop impact experiments in
the viscous regime. On the same plot, we report the experimental data of Refs. [52,53]. We find
a remarkable agreement between our shifted values and those from the literature, even though the
expansion sheet dynamics that result from the impact of drops are nonstationary, supporting our
simple approach.

B. Rationalization of the maximal expansion by considering the biaxial deformation

To go one step further, we provide below scaling laws to account semiquantitatively for the
dependence of the maximum expansion on the biaxial extensional viscosity (Fig. 7). We restrict
our analysis to Newtonian samples. Indeed, for the normalized maximum expansion factor, each
non-Newtonian sample in the viscous regime can be replaced by a Newtonian sample exhibiting the
same normalized maximum expansion factor a shown before.

We adopt an energy conservation balance and first consider the capillary regime, for which the
initial kinetic energy is assumed to be fully converted into surface energy at the maximum expansion
of the sheet:

1
2 mv2

0 � 2πγ
(
dcap

Max

)2
, (5)

where m = ρπd3
0 /6 is the mass of the drop and dcap

Max is the diameter at maximum expansion of the
sheet in the capillary regime where viscous dissipation is negligible. In the viscous regime, we need
to add to the right-hand side of Eq. (5) a term accounting for the viscous dissipation, which here is
assumed to result only from the biaxial extensional deformation:

1
2 mv2

0 � 2πγ d2
Max + EB. (6)

Combining Eqs. (5) and (6), we obtain for the normalized maximum expansion factor, d̃ ,

d̃ = dMax

dcap
Max

=
√

1 − 2EB

mv2
0

, (7)
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with EB the biaxial extensional extensional energy dissipated during the process of sheet expansion.
To a first approximation, EB can be written as

EB ≈
∫ tMax

0
dt

∫
V

σB(ε̇)ε̇ dV, (8)

where V = πd3
0

6 is the volume of the drop, σB(ε̇) = ηBε̇, and tMax is the time to reach maximum
expansion. Hence, assuming also a volume conservation with a uniform thickness sheet, Eq. (8) can
be rewritten as

EB ≈ ηB
πd3

0

6

∫ tMax

0

(
1

d

∂d

∂t

)2

dt . (9)

Using a simple first-order scaling approach to calculate the strain rate, we consider ∂d
∂t ≈ dMax−d0

tMax

and a geometric average between the initial and final values of the sheet diameter, d ≈ √
d0dMax,

Eq. (9) reads

EB ≈ ηB
πd2

0

6

(dMax − d0)2

dMaxtMax
. (10)

Here (dMax−d0 )2

dMaxtMax
can be considered as an apparent velocity, vapp, close to the initial expansion

speed of the drop upon impact. Combining Eqs. (7) and (10) together with the definition of the
biaxial extensional Ohnesorge number, one predicts

d̃ =
√

1 − αOhB (11)

with α = 2vLvapp

v2
0

and vL =
√

γ

ρdo is the typical velocity of free oscillations of the drop [55]. We find
that the functional form of Eq. (11) reproduces very nicely the experimental data (Fig. 7), which
implies that vapp is approximatively constant. The best fit of the data (continuous red line) yields, for
all concentrations, α = 0.06 ± 0.02, where the error bars are used to obtain the two envelopes of the
data (dashed black lines). This value is compared to the theoretical expectations for the parameter
α. For Newtonian fluids, vapp = 2.3 ± 1.2 m/s, thus α = 00.25 ± 0.02, Overall, the fit parameter of
the master curve is thus found in reasonable agreement with the ones calculated using the different
experimental quantities, thus justifying the relevance of our approach.

V. CONCLUSION

Drop impact experiments on repellent surfaces have been performed with Newtonian fluids and
shear-thinning polymer solutions. Two regimes for the maximum expansion diameter of freely
expanding sheets have been identified: a capillary regime, where the maximum expansion does
not depend on viscosity, and a viscous regime, where the maximum expansion is reduced with
increasing viscosity. We have demonstrated that the dominant source of viscous dissipation is the
biaxial extensional deformation during sheet expansion, which consequently controls the maximum
expansion of the sheets in the viscous regime. We have provided a scaling prediction of the sheet
maximum expansion as a function of the biaxial extensional Ohnesorge number, in good quantitative
agreement with our experimental results. For viscoelastic thinning fluids, we have proposed a simple
approach to measure the biaxial extensional thinning viscosity based on the maximum expansion
factor of a freely expanding sheet: the relevant characteristic thinning viscosity is simply given by
the viscosity of a Newtonian fluid with the same normalized expansion factor; it obeys the behavior
of the biaxial extensional viscosity of polymeric samples as a function of the Weissenberg number
in stationary conditions, providing one considers the mean biaxial extensional rate of the sheet
during the expansion regime, as the relevant strain rate for the Weissenberg number. Our approach
constitutes a first and crucial step toward the development of a new class of biaxial extensional
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rheometry tools based on drop impact experiments but needs further investigations (in current
progress) including drops of different diameters and different impact heights.
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