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ABSTRACT

When a drop of fluid hits a small solid target of comparable size, it expands radially until reaching a maximum diameter and subsequently
recedes. In this work, we show that the expansion process of liquid sheets is controlled by a combination of shear (on the target) and biaxial
extensional (in the air) deformations. We propose an approach toward a rational description of the phenomenon for Newtonian and
viscoelastic fluids by evaluating the viscous dissipation due to shear and extensional deformations, yielding a prediction of the maximum
expansion factor of the sheet as a function of the relevant viscosity. For Newtonian systems, biaxial extensional and shear viscous dissipation
are of the same order of magnitude. On the contrary, for thinning solutions of supramolecular polymers, shear dissipation is negligible
compared to biaxial extensional dissipation and the biaxial thinning extensional viscosity is the appropriate quantity to describe the
maximum expansion of the sheets. Moreover, we show that the rate-dependent biaxial extensional viscosities deduced from drop impact
experiments are in good quantitative agreement with previous experimental data and theoretical predictions for various viscoelastic liquids.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0057316

I. INTRODUCTION

Drop impact process on solid surfaces is an extremely active
research area because of the development of high-speed imaging tech-
nology,1 and its implication in many industrial applications, such as
the impact of pesticide drops on plant leaves2 or in inkjet printing.3

We can distinguish two main experimental configurations. On
the one hand, drops are impacted on a flat solid surface with a size
much larger than the drop size, in a way that the whole expansion
event occurs on the target.4–10 The sheet spreads thus in intimate con-
tact with a uniform surface. Hence, viscous dissipation is mainly
shear-induced. In that case, it has been reported that the shear
rate-dependent viscosity is the pertinent parameter to describe the
dissipation process in the expansion dynamics of non-Newtonian flu-
ids.8,10–14 Note, however, that the retraction dynamics was suggested

to be dominated by the nonlinear extensional viscosity for a drop of
fluid containing polymer additives.15

The other distinguishable configuration, albeit sparsely studied,
involved impacting drops on repellent surfaces where there is no con-
tact with the surface, hence eliminating shear dissipation. Such surfa-
ces may include superhydrophobic surfaces,16–19 hot plates above the
Leidenfrost temperature,20,21 and, more recently, cold plates covered
with liquid nitrogen to exploit the cold Leidenfrost effect.22–25 We
have demonstrated elsewhere24 that, in the so-called viscous regime,
biaxial extensional dissipation dominates the sheet dynamics produced
using the cold Leidenfrost effect.

Nature and pertinent industrial problems are more complex than
the above two extreme cases. Hence, we may consider a third scenario,
where drops impact a solid target of size comparable to that of the
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drop. In this case, a part of the expanding sheet is in contact with the
target surface and the other part is expanding freely in the air, which,
depending on the sample viscosity, may be the largest part of the
sheet.26–36 Although the situation of impacting drops on small targets
was originally conceived to reduce the friction dissipation,26 it turns
out that it actually highlights the competition between shear dissipa-
tion (on the target) and biaxial extensional dissipation (in the air). In
this work, we assess this competition by evaluating both dissipations
(shear and biaxial extensional) for Newtonian and rheologically thin-
ning non-Newtonian fluids. We show that, for Newtonian fluids, the
shear and biaxial extensional dissipations are of the same order of
magnitude. However, for the non-Newtonian thinning samples, the
biaxial extensional dissipation is found to control the sheet expansion
dynamics. We compare our data with experimental measurements of
biaxial extensional viscosity of thinning fluids24,37,38 and model semi-
quantitatively the sheet expansion dynamics using a biaxial extensional
thinning viscosity.

II. MATERIALS AND METHODS
A. Materials

1. Newtonian fluids

We investigate two classes of Newtonian fluids, silicone oils, and
mixtures of water and glycerol. Silicone oils, with zero-shear-rate vis-
cosities from 4.5 to 339 mPa s, an average surface tension of
20mN/m,39 and densities ranging from 0.913 to 0.97 g/mL, are pur-
chased from Sigma-Aldrich and used as received. Glycerol/water mix-
tures with concentrations ranging from 22 to 100% g/g glycerol are
used, yielding zero-shear rate viscosities from 1.7 to 1910 mPa s, densi-
ties from 1.05 to 1.25 g/mL,40 and an average surface tension of
65mN/m (as measured with a pendant drop setup).

2. Non-Newtonian fluids

As non-Newtonian system, we choose wormlike micellar solu-
tions (WLM) made of 2,4-bis(2-ethylhexylureido)toluene, abbreviated
as EHUT, dispersed in dodecane. This monomer has the ability to
self-associate by means of hydrogen bonding in an apolar solvent
(dodecane) forming supramolecular polymers.41–47 As schematically
shown in Fig. 1, EHUT molecules self-assemble into small and long
rod-like structures whose cross section is solvent- and temperature-
dependent. Above critical concentration and temperature, the mono-
mers self-assemble into thin filaments with a diameter (1.3 nm) com-
parable to the size of one EHUT monomer. At lower temperatures,
thick tubes with a cross section equivalent to about three EHUT
monomers form. In this work, we investigate samples in the tube
region of the phase diagram, in the temperature range between 20 �C
and 25 �C, and concentration range from C¼ 0.37 to C¼ 3 g/L, where
the tubes are long enough to entangle, allowing us, hence, to explore a
wide range of viscoelastic properties. Although this phase diagram is
made for EHUT supramolecular assemblies formed in toluene,
Fourier transform infrared spectroscopy (FTIR), small-angle neutron
scattering (SANS), and rheology studies confirm that the range of tem-
peratures and concentrations investigated here also corresponds to the
tube region of the EHUT assemblies formed in dodecane.43–45 The
surface tension for EHUT solutions is assumed to be independent of
concentration. We take C ¼ 256 2 mNm�1 as measured with a pen-
dant drop experiment for a dilute sample (C¼ 0.37 g/L). The density

of the EHUT solutions is assumed to be equal to the density of the sol-
vent, q ¼ 0.75 g/mL.

B. Methods

1. Solution rheology

Linear and nonlinear shear rheology measurements are per-
formed with an MCR501 stress-controlled rheometer (Anton Paar,
Austria), operating in the strain control mode and equipped with a
stainless-steel cylindrical Couette geometry. Temperature control
(6 0:2 �C) is achieved by means of a Peltier element.

For Newtonian and non-Newtonian samples, the zero-shear-rate
viscosity, g0, is measured by applying a ramp of steady shear rate vary-
ing from 0.01 to 1000 s�1.

For EHUT solutions, the linear viscoelastic spectra are obtained
by applying a small-amplitude sinusoidal strain (c ¼ 10%) with vary-
ing angular frequency, x, from 100 to 0.01 rad/s, and measuring the
storage, G0ðxÞ, and loss, G00ðxÞ, moduli. The complex viscosity is also
calculated from the linear viscoelastic spectra as jg?ðxÞj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG02ðxÞþG02ðxÞÞ
p

x . All experiments are performed in open air without
any particular humidity precaution (the relative humidity is about
40%). Since hydrogen bonding systems such as EHUT self-assemblies
are very sensitive to humidity,48,49 and because we do not control the
drop impact environmental conditions, we ensure that both bulk rhe-
ology and drop impact experiments are conducted under the same
temperature and humidity conditions.

2. Drop impact experiment

To study the competition between shear and biaxial extensional
viscous dissipations, two drop impact experimental setups are used.

FIG. 1. Phase diagram for EHUT solutions in toluene43 showing the transition
between monomers and supramolecular filaments. The structure of the EHUT
monomer is shown, along with a schematic illustration of the various aggregates
formed (out of scale), that is, filaments and tubes. Hydrogen bonds are represented
by dotted lines connecting the urea functions (black and gray circles).
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The main setup based on the impact on a small cylindrical target was
originally designed by Vignes-Adler et al.26 and subsequently modified
by several groups.30,31,50 We use the same setup as in,31,32 schemati-
cally shown in Fig. 2(a). In brief, a hydrophilic glass target of diameter
dT ¼ 6:5 mm is fixed on top of an aluminum rod with the same diam-
eter. The liquid is injected from a syringe pump with a flow rate of
1ml/min through a needle placed vertically above the target. The
initial diameter of the falling drop is constant, d0 ¼ 3:9 6 0.2mm,
as measured by image analysis and by weighting the drops. Note
that, considering the difference in fluids’ surface tensions, we have
adapted the needle diameter to produce a constant drop diameter
(a needle with a diameter of 2mm for fluids with a surface tension
of 65mN/m and a needle diameter of 4mm for fluids with
C¼ 20–25mN/m). The drop falls from a height h¼ 91 cm, yielding
an impact velocity v0 ¼

ffiffiffiffiffiffiffi
2gh

p
¼ 4:2 m s�1 (g is the acceleration of

gravity). The corresponding Weber numbers, We ¼ v20qd0
C , are We

�1200 for glycerol/water mixtures, We �3400 for silicone oils, and
We �2400 for EHUT-based samples. The target is mounted on a
transparent Plexiglas plate, illuminated from below by a high-
luminosity backlight (Phlox LLUB, luminance of 20 cd/m2). The
drop impact is recorded from the top using a high-speed camera
(Phantom V 7:3) operating at 6700 frames/s with a resolution of
800� 600 pixels2. The angle between the camera axis and the hori-
zontal plane is fixed at about 10�.

Additional experiments are performed with Newtonian fluids
under cold Leidenfrost conditions.22 The relevant setup is described
elsewhere24 and schematized in Fig. 2(b). In brief, the drop maintained
at room temperature impacts a smooth surface (polished silicon wafer
or quartz slide with a diameter larger than the maximum sheet diame-
ter) covered with a thin layer of liquid nitrogen (temperature
T¼�196 �C). Upon impact, a vapor cushion forms at the liquid inter-
face due to the evaporation of N2, providing a unique scenario of
non-wetting and slip conditions that eliminates shear viscous dissipa-
tion.22,51 Details on the heat transfer involved in the impact of drops
in cold Leidenfrost conditions have been reported elsewhere,25 and it
does not change significantly the temperature of the drops during the
expansion phase of the sheet.

3. Image analysis

The time evolution of the diameter of the sheet is measured with
ImageJ software. We first subtract the background image from the
expansion movie and highlight the rim by a binary thresholding. This
allows us to determine the contour of the sheet and measure its area A.
An apparent sheet diameter is simply deduced as: d ¼

ffiffiffiffi
4A
p

q
. The

results are obtained by averaging for each sample the time evolution of
the sheet diameter from three different experiments. Note that for the
small target setup, the dark black central disk is the target and pre-
cludes to study the expansion of sheets that do not cross the edge of
the target. For the cold Leidenfrost setup, in addition to the top view
images, systematic side view images are also collected, though not
shown here, to correct the maximum expansion diameter for the
corona effect observed for the low viscosity samples (viscosity smaller
than 100 mPa s), as detailed in Ref. 24.

III. RESULTS AND DISCUSSION
A. Newtonian fluids

1. Drop impact experiments

Once hitting the target, the drop spreads first on the target and
then expands freely in the air until reaching a maximum expansion. It
then retracts because of surface tension and eventually bulk elasticity
for non-Newtonian fluids (representative videos of the impact process
are available in the multimedia). This general phenomenology has
been observed for many types of fluids impacting a small solid tar-
get.26,30–32,34,50,52 The overall behavior is illustrated in Fig. 3

FIG. 2. (a) Schematic illustration of the main experimental setup configuration, con-
sisting of a drop impacting a small solid target as described in the text. (b)
Schematic illustration of the second experimental setup showing a drop falling on a
liquid nitrogen thin layer. The expansion event is recorded using two fast cameras
allowing concomitant top and side visualizations.

FIG. 3. Snapshots taken at different times (as indicated on each image) during the
expansion of the sheet for a glycerol/water mixture with a viscosity g0 ¼ 160 mPa
s produced upon impact on a solid target with a diameter dT ¼ 6:5 mm. The maxi-
mum expansion occurs at tMax ¼ 3:58 ms. The black area represents the surface
of the target. Video of a drop of glycerol and water mixture (160 mPa s) impacting
on a target of diameter 6.5 mm at an impact velocity of 4.2 m/s. The impact was
filmed with a high-speed camera operating at 6700 fps and has been slowed down
200 times for the videos. Multimedia view: https://doi.org/10.1063/5.0057316.1
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(Multimedia view) that depicts snapshots of the drop after its impact
for a Newtonian sample (glycerol/water) with g0 ¼ 1606 10 mPa s at
different times. In the bottom right of Fig. 3, we show the correspond-
ing time evolution of the effective sheet diameter, d, where the expan-
sion and retraction regimes can be clearly determined (we choose for
the origin of time, the time when the drop hits the target). Similarly, in
Fig. 4 (Multimedia view), we present snapshots for the same
Newtonian sample at different times, when it expands and retracts
under cold Leidenfrost conditions obtained by impacting a drop on a
thin layer of liquid N2. The origin of time is set when the droplet starts
expanding on the nitrogen vapor cushion.

Despite qualitatively similar behavior, we find that, for a same
sample and a same impact velocity, the maximum expansion diameter
of the sheet, dMax, is significantly larger under cold Leidenfrost condi-
tions (dMax ¼ 34:6 mm) than with the small target (dMax ¼ 12:9
mm). When the expansion results from the impact on the target, only
the inner portion of the sheet is at intimate contact with the target sur-
face, while its outer part is free in the air, resulting in a combination of
two potential sources of viscous dissipation: shear on the target and
biaxial extensional everywhere but predominantly in air. The situation
is less complex when the sheet is produced under cold Leidenfrost
conditions because the sheet is expanding on the liquid nitrogen
vapor, ensuring biaxial extensional deformation as the unique source
of viscous dissipation.24

The cold Leidenfrost conditions allow also the observation of the
sheet central region, usually obscured by the target. It is worth noting

the occurrence of a thicker rim for the sheet when impacted on the tar-
get and, on the other hand, the appearance of a larger number of better
defined fingers instabilities under cold Leidenfrost conditions.
However, we will not discuss further these two interesting features,
which are out of the scope of this work. Moreover, in the rest of the
paper, we will focus on the sheets expansion dynamics up to their
maximum expansion and not consider the retraction regime.

In order to follow the expansion dynamics of different samples,
we focus on the maximum expansion diameter dMax. We use a nor-
malized maximum expansion diameter, ~d , adopting the same defini-
tion as in Refs. 24 and 32:

~d ¼ dMax

dcapMax

: (1)

Here, dMax is the maximum diameter of the sheet and dcapMax is the
maximum expansion diameter in the capillary regime (at low viscos-
ity), where viscous dissipation does not reduce significantly the maxi-
mum expansion diameter. This normalized quantity allows us to
compare drops with different initial diameters d0 and different surface
tensions. In addition, to account for the variation of surface tensions
among samples, the data are plotted against the dimensionless zero-
shear-rate Ohnesorge number, which expresses the ratio of viscous
forces to inertial and surface tension forces: Oh0 ¼ g0ffiffiffiffiffiffiffiffi

qCd0
p , with q the

sample density, C the surface tension, and g0 the zero-shear-rate
viscosity. Results for different Newtonian fluids obtained using two
experimental conditions (target and cold Leidenfrost) are presented in
Fig. 5. Note that, for the more viscous glycerol/water mixtures
(g0 > 200 mPa s), experiments on the solid target are not shown
because the maximum expansion diameter is smaller than the target
diameter itself. We find two regimes for both experimental configura-
tions. The capillary regime where the dynamics is independent of
viscosity resulting in a constant ~d � 1, and the viscous regime, where

FIG. 4. Snapshots taken at different times (as indicated on each image) during the
expansion of the sheet for a glycerol/water mixture with a viscosity g0 ¼ 160 mPa
s produced upon impact under cold Leidenfrost conditions. The maximum expan-
sion occurs at tMax ¼ 7:31 ms. Video of a drop of glycerol and water mixture (160
mPa s) impacting on liquid nitrogen at an impact velocity of 4.2 m/s and video of a
drop of EHUT solution (C¼ 0.37 g/L) impacting a target of diameter 6.5 mm at an
impact velocity of 4.2 m/s. The impact was filmed with a high-speed camera operat-
ing at 6700 fps and has been slowed down 200 times for the videos. Multimedia
view: https://doi.org/10.1063/5.0057316.2

FIG. 5. Normalized maximum expansion as a function of the zero-shear-rate
Ohnesorge number, Oh0, for the two classes of Newtonian samples, as indicated in
the legend, and for the two experimental configurations: small solid target (purple
symbols) and cold Leidenfrost conditions (green symbols). Dotted lines indicate the
onset of the viscous regime for each configuration. For the Newtonian samples
(glycerol/water) presented in Figs. 3 and 4, Oh0 ¼ 0:31.
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~d decreases with increasing viscosity. Importantly, the transition from
capillary to viscous regime occurs at a larger Oh0 number (higher vis-
cosity) for the sheets produced under cold Leidenfrost conditions
(Oh0 � 0:6) compared to those produced by the impact on a target
(Oh0 � 0:2). This implies that viscous dissipation is more important
with the target setup than with the cold Leidenfrost setup, as exempli-
fied by comparing the expansion dynamics of the Newtonian sample
presented in Figs. 3 and 4.

In addition, Fig. 5 confirms the fact that even in the absence of
friction on a solid surface, a dissipation regime exists resulting in the
decrease in ~d with Oh0. In this configuration, the deformation of the
sheet is biaxial extensional.24 The dissipation on a small solid target is
by contrast more complex because it results from the contact with a
solid surface and from free expansion in the air (similar to that under
cold Leidenfrost conditions). Thus, in Sec. IIIA 2, we will analyze the
contribution of each dissipation mechanism to the expansion dynam-
ics of a Newtonian drop impacting a small solid surface.

2. Viscous dissipation processes

a. Shear dissipation energy. To estimate the shear dissipation
energy, we first define the shear rate experienced by the sheet during
its expansion on the small solid target. We approximate the expanding
sheet by a disk. The shear flow velocity field on the target53,54 reads

vr ¼
2
RH

dR
dt

rz ðradialÞ;

vz ¼
�2
RH

dR
dt

z2 ðaxialÞ;

8>>>><
>>>>:

(2)

where RðtÞ ¼ dðtÞ
2 is the radius of the expanding sheet, r denotes the

radial direction, z denotes the axial direction, and HðtÞ ¼ d30
6RðtÞ2 is the

mean thickness of the expanding sheet in the disk shape approxima-
tion with d0 the drop diameter. The instantaneous shear rate reads

_c ¼ 1
2

@vr
@z
þ @vz
@r

� �
¼ 1

RH
dR
dt

r: (3)

The viscous shear energy dissipated, ES, during the sheet expan-
sion process can be written as

ES �
ðtMax

0

ð
V
rS _cdVdt; (4)

where V denotes the sheared volume and rS is the shear stress. During
the expansion of the drop sheet, the viscous boundary layer thickness,

dðtÞ ¼ a
ffiffiffiffiffi
gSt
q

q
(a is an unknown prefactor and gS ¼ g0 is the shear vis-

cosity), which quantifies the thickness of the sheet that is actually
sheared.32,55,56 At a short time, d < H, but the viscous boundary layer
grows with time, while the film thickness, H(t), decreases. Hence, at
some time d exceeds H and the relevant thickness to be considered is
H and not d anymore.

For simplicity, here, we consider the two limits for the viscous
shear energy: (i) ES;H, where the relevant thickness for the sheared vol-
ume is H(t); and (ii) ES;d, where the relevant thickness for the sheared
volume is dðtÞ. ES;H reads

ES;H ¼
ðtmax

0
dt
ðdT=2
0

gS _c22prHdr

¼ 3pgSd
4
T

16d30

ðtmax

0

dR
dt

� �2

dt: (5)

With the approximations
Ð tmax

0 ðdRdt Þ
2dt � tmaxhðdRdt Þ

2i; tmax � dmax
v0
,

and dmax � d0; ES;H reads

ES;H �
3pgSd

4
Tv0

64d30
dmax: (6)

On the other hand, ES;d reads

ES;d ¼
ðtmax

0
dt
ðdT=2
0

gS _c22prddr

¼ 9pag3=2S d4T
8
ffiffiffi
q
p

d60

ðtmax

0
R2 dR

dt

� �2

t1=2dt : (7)

With the approximations
Ð tmax

0 R2ðdRdt Þ
2t1=2dt � tmax

1
4

dR2

dt

� �2� �
ht1=2i; tmax � dmax

v0
, and dmax � d0; ES;d reads

ES;d �
3pag3=2S d4Tv

1=2
0

256
ffiffiffi
q
p

d5=20

dmax

d0

� �7=2

: (8)

b. Biaxial extensional dissipation energy. A typical example of a
biaxial extensional flow is the compression of a sample sandwiched
between two (continuously) lubricated surfaces.57 The biaxial viscosity
is defined as gB ¼ rrr�rzz

_e , where _e is the strain rate, and rrr and rzz are
the stress tensor components in cylindrical coordinates.57 The stress
tensor difference rrr � rzz is commonly expressed as the biaxial stress
rB. Hence, the biaxial viscosity reads gB ¼ rB

_e . For a Newtonian fluid,
gB ¼ 6gS.

57

The biaxial extensional energy, EB, dissipated during the expan-
sion of the sheet can be written as24

EB ¼
ðtmax

0
dt
ð
V
rB _edV

� gB
pd30
6

ðtmax

0

1
d
@d
@t

� �2

dt

� gB
pd30
6

tmax
@ ln ðdÞ
@t

� �2
* +

¼ gB
pv0d30
6

ln2
dmax

d0

� �
dmax

; (9)

where _e ¼ 1
d
@d
@t is the biaxial extensional strain rate.

c. Comparison between shear and biaxial extensional viscous
dissipations. In order to assess the respective roles of viscous dissipa-
tion due to shear and biaxial extensional deformations during the
expansion of a drop, we compare in Fig. 6 the variations of the biaxial
extensional viscous energy EB [Eq. (9)] with the two limits for the
shear viscous dissipation energy ES;H [Eq. (6)] [Fig. 6(a)] and ES;d
[Eq. (8)] [Fig. 6(b)]. The dissipation energies have been normalized by
the initial kinetic energy of the drop EK ¼ 1

2mv20, with m the mass of
the drop, and plotted as a function of the zero-shear rate Ohnesorge
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number, Oh0. We find that ES;H and ES;d exhibit power law evolution
with the viscosity, which mirrors their explicit dependence with
g0; ES;H � g0 [Eq. (6)] and ES;d � g3=20 [Eq. (8)], reflecting the fact
that the dependence of dMax with viscosity is much weaker. This is also
the case for EB, which increases as a power law with g0; EB � g0 [Eq.
(9)], since gB¼ 6 g0 for Newtonian fluids.

Moreover, ES;d and ES;H are of the same order of magnitude.
Hence, for convenience, we choose the simplest one, ES;H for further
discussion on the competition between shear and biaxial extensional
viscous dissipation. From Eqs. (6) and (9), we can compute the ratio of
the two sources of viscous dissipation energy as

EB
ES
¼ 64

3
d0
dMax

� �2 d0
dT

� �4

ln2
dmax

d0

� �
: (10)

This ratio strongly depends on the drop-to-target size ratio, d0dT. It
does not depend explicitly on g0, but indirectly because of the depen-
dence of the maximal expansion diameter on the sample viscosity.
Furthermore, as evidenced by the superposition of ES;H=EK and
EB=EK in Fig. 6, EB

ES;H
is close to one and, as expected, depends only

weakly on g0.

B. Viscoelastic supramolecular polymers

In this section, we present the results for non-Newtonian fluids.
In contrast to their Newtonian counterparts, these samples have shear
and biaxial extensional viscosities that depend on the applied deforma-
tion rate.

1. Viscoelasticity

Figure 7(a) shows the dynamic moduli (G0; G00) as a function of
oscillatory frequency (x) for some representative concentrations. As
discussed previously,44 these systems behave as Maxwell fluids at low
frequencies. This is confirmed by the good agreement between the

data and the Maxwell fits [lines in Fig. 7(a)] where G0 ¼ G0
x2s20

1þx2s20
and

G00 ¼ G0
xs0

1þx2s20
, with G0 being the elastic modulus and s0 the charac-

teristic relaxation time. In Fig. 7(b), we plot the relevant viscoelastic
quantities (G0, s0, and g0) for the range of concentrations studied here,
extracted from the linear viscoelastic spectra. We find that these quan-
tities follow scaling laws with concentration (G0 � C1:9; s0 � C0:8,
and g0 � C2:6) in agreement with.46

Figure 7(c) depicts the complex viscosity, jg�j, as a function of
frequency, along with the steady shear viscosity, gSð _cÞ, as a function of
shear rate. The collapse of the dynamic and steady data (especially
above 0.37 g/L) validates the Cox–Merz rule.58 We describe the data
with a fit by means of the Cross model,59 one of many options for
empirical models, all giving comparable results:

gSð _cÞ ¼ g1 þ
g0 � g1
1þ ðk_cÞn : (11)

Here, g1 is the viscosity at very large shear rate that we set equal
to the solvent viscosity (g1 ¼ 1:5 mPa s), g0 is the zero-shear-rate vis-
cosity [plotted in Fig. 7(b)], n is the shear-thinning exponent, and the
parameter k is the inverse of a critical shear rate.57 We find that the
Cross model provides a good description of the samples’ shear-
thinning behavior [continuous lines in Fig. 7(c)], except at very large
shear rates where some deviation is systematically measured. All data
can be fitted with a very similar shear-thinning exponent
n ¼ 0:976 0:05.

2. Drop impact experiments

Figure 8 (Multimedia view) depicts snapshots of the drop after its
impact for an EHUT solution with C¼ 0.37 g/L at different times. The
general phenomenology that has been observed for Newtonian sam-
ples (see Figs. 3 and 4) is also found here, and the expansion process
does not exhibit any pertinent qualitative differences compared to that
of Newtonian samples. This suggests common physical processes driv-
ing the expansion dynamics of sheets of different kinds of systems.

In Fig. 9, ~d is plotted as a function of the zero-shear-rate
Ohnesorge number, Oh0, for both EHUT solutions (red half plain

FIG. 6. Variations of the biaxial extensional viscous energy EB calculated from
Eq. (9) and the two limits of the shear viscous dissipation energy, respectively, (a)
ES;H from Eq. (6), and (b) ES;d from Eq. (8) during the expansion of a drop impact-
ing a small solid target, as a function of the zero-shear rate Ohnesorge number,
Oh0, for the two classes of Newtonian fluids (purple symbols) and EHUT supramo-
lecular polymer solutions (red squares). The dissipation energies have been nor-
malized by the initial kinetic energy of the drop EK ¼ 1

2mv
2
0 . The dashed and solid

lines indicate a slope of 1 and 1.5, respectively.
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squares) and Newtonian samples (green plain triangles) impacted on a
small target. We find that for the thinning fluids, the onset of the vis-
cous regime takes place at much higher Oh0, hence at much larger g0
(by factor of 100) as compared to Newtonian samples, a clear indica-
tion that the zero-shear-rate viscosity, is not the relevant quantity to
characterize the dissipation process for viscoelastic fluids. We first
argue that elasticity does not play an important role in the expansion
dynamics of the present viscoelastic sheets. Indeed, even if the charac-
teristic relaxation time of the EHUT is always much larger than the

FIG. 7. (a) Frequency dependence of the storage (G0 , filled symbols) and loss (G00 ,
open symbols) moduli of different EHUT supramolecular polymer solutions. The
lines (solid for G0, dashed for G00) are Maxwell model fits for samples with different
concentrations as indicated in the legend. (b) Evolution of the storage modulus
(top), terminal relaxation time (middle), extracted from the Maxwell fits, and zero-
shear-rate viscosity (bottom) with sample concentration. The concentration depen-
dence is indicated by the slopes in each figure. (c) Complex viscosity as a function
of frequency (closed symbols) and steady shear viscosity as a function of shear
rate (open samples), and fits (lines) using the Cross equation [Eq. (11)], for samples
with different concentrations as indicated in the legend.

FIG. 8. Snapshots taken at different times (as indicated on each image) during the
expansion of a sheet for EHUT sample with concentration C¼ 0.37 g/L. Multimedia
view: https://doi.org/10.1063/5.0057316.3

FIG. 9. Normalized maximum expansion factor ~d as a function of the zero-shear-
rate Ohnesorge number, Oh0, for an EHUT supramolecular polymer solutions
(closed squares) and for the Newtonian water/glycerol mixtures and silicone oils
(purple symbols) and of the effective shear Ohnesorge number, OheffS (see the text),
for the EHUT supramolecular polymer solutions (open squares).
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characteristic time of the impact experiment [see the regime where
storage modulus overwhelms the loss modulus in Fig. 7(a)] so that in
principle elasticity should play a role in drop impact experiments, bulk
elastic energy contribution is negligible with respect to the capillary
contribution if the elastocapillary length, defined as lec ¼ 3C

G0
, is larger

than the drop diameter d0.
23 Taking G0 ¼ 8:5 Pa, C¼ 25mN/m,

and d0¼ 4mm, for the most concentrated sample investigated
[Figs. 7(a) and 7(b)], one gets lec=d0 ¼ 2:2 > 1. This ratio is even
larger for less concentrated polymer solutions. Therefore, bulk elastic
energy contributions can be safely neglected in the present framework.
Hence, the contrasted results for Newtonian and non-Newtonian sam-
ples must stem from the thinning character of EHUT solutions.
Actually, different groups have successfully accounted for the shear-
thinning upon impact on a solid surface with a size larger than the
expanding maximum sheet diameter.8,11,13,32

In our case, the non-stationary shear rate experienced by the part
of the expanding liquid sheet in contact with the target can be analyzed
as following. We estimate the spatial average shear rate _cðtÞ experi-
enced by the sheet on the target at a given time t. We assume a con-
stant thickness H(t) throughout r at a given time. We define by t�, the
time at which the expanding sheet reaches the edge of the target, that
is, Rðt�Þ ¼ RT ¼ dT

2 .
For t < t�,

_cðtÞ ¼ 1
pR2ðtÞ

ðRðtÞ
0

1
RðtÞHðtÞ

dR
dt

2pr2dr ¼ 4R2ðtÞ
d30

dR
dt
: (12)

For t > t�,

_cðtÞ ¼ 1
pR2

T

ðdT=2
0

1
RðtÞHðtÞ

dR
dt

2pr2dr ¼ 2dTRðtÞ
d30

dR
dt
: (13)

Finally, we calculate the time-averaged shear rate experienced by
the sheet on the target during the entire expansion process as

h _ci ¼ 1
tmax

ðt�
0

4R2

d30

dR
dt

dt þ
ðtmax

t�

4RTR
d30

dR
dt

dt

 !
; (14)

h _ci ¼ 4
tmaxd30

d3T
24
þ
dT d2max � d2T
	 


16

� �
: (15)

A good approximation, well supported by the experimental
results (see Fig. 10), is tmax � dmax

v0
with v0 the impact velocity.

Moreover, by assuming that 3d2max � d2T, the time-averaged shear
rate, h _ci, reads:

h _ci � dTdmaxv0
4d30

: (16)

Having shown in Fig. 7(c) that the flow curves are well fitted by
the Cross model [Eq. (11)], the effective shear viscosities, geffS , are eval-
uated from the Cross fits at the relevant shear rate, h _ci. The latter vary
from h _ci¼ 1420 s�1 to 3220 s�1 leading to effective viscosities varying
between geffS ¼ 10 and 2 mPa s.

In Fig. 9, we plot the normalized maximum expansion as a func-
tion of an effective Ohnesorge number, OheffS , where g0 is replaced by
geffS for the non-Newtonian fluids (open red squares). The plot shows
that viscoelastic samples expand much less than one would expect
based only on their shear viscosity at the relevant shear rate, when tak-
ing as reference the data for Newtonian fluids. Moreover, taking into
account the shear-thinning viscosity generates an unrealistic situation
where samples with almost the same shear-thinning viscosity exhibit
different expansions. Therefore, the shear-thinning viscosity fails to
properly describe the maximum expansion of the viscoelastic sheets.
Instead, the biaxial extensional viscous dissipation during the expan-
sion in the air must be considered. The deformation field during the
sheet expansion upon impacting a small target is essentially biaxial
extensional, except on the small target where the sheet experiences
both shear and biaxial extensional deformations. Given the very low
value of the shear-thinning viscosity, we anticipate that the dissipation
is mainly due to the biaxial extensional flow.

3. Viscous dissipation processes

In order to estimate the shear and biaxial extensional dissipation
energy of rheo-thinning fluids, one must assess the relevant rate-
dependent viscosities involved in these processes.

a. Effective shear viscosity. In order to account for the rate-
dependent viscosity in the shear dissipation energy of non-Newtonian
fluids, we will consider the effective shear viscosity, geffS , resulting from
the shear thinning of the EHUT solution and accessible by mean of
classical rotational rheometry (see Sec. III B 2).

b. Effective biaxial extensional viscosity. Measuring properly, the
biaxial extensional viscosity is a difficult task for viscoelastic fluids of
low viscosity such as the present EHUT solutions.37,38,60–66 In the
framework of the impact drop problem, we have very recently estab-
lished a successful, yet simple strategy in order to address this chal-
lenge.24 Our approach consists of mapping the viscoelastic systems to
Newtonian samples impacted under cold Leidenfrost conditions where
they experience a purely biaxial extensional deformation. Thus, we
attribute to the viscoelastic sample an effective biaxial extensional vis-
cosity equal to the biaxial extensional viscosity of a Newtonian fluid
with the same maximum expansion factor. Operationally, we shift

horizontally the data of ~d obtained for the viscoelastic samples so that
they overlap the reference data for the Newtonian fluids (Fig. 11). The
shift factor yields directly an effective biaxial extensional Ohnesorge

FIG. 10. Time to reach the maximal expansion, tmax, as a function of dmax=v0, with
dmax the maximal expansion of the sheet and v0 the impact velocity, for all impact
experiments. The line corresponds to tmax ¼ dmax

v0
.
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number, OheffB ¼
geffBffiffiffiffiffiffiffiffi
qCd0
p , from which an effective biaxial extensional

viscosity geffB is derived. geffB is different from the biaxial extensional vis-

cosity in the Newtonian limit, g0B ¼ 6g0. Note that only ~d data in the
viscous regime are shifted for EHUT systems (data in the capillary
regime are not subjected to the shift).

In Fig. 11, we show the fit of the in Ref. 24: in:

~d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bOheffB

q
: (17)

Here, b ¼ 0:0606 0:020 is the only fitting parameter. The model
in Eq. (17) is based on an energy conservation balance, assuming that
the initial kinetic energy, EK, is fully converted into surface energy, EC,
and biaxial extensional viscous dissipation energy, EB (the shear vis-
cous dissipation energy, ES, is neglected).

In the following, we will verify our assumption that the biaxial
extensional dissipation is the relevant source of viscous dissipation in
the present experimental conditions. First, we validate the rheological
origin of geffB . The effective biaxial extensional viscosity, geffB , is
expected to depend on the strain rate. We use here the same approach
as the one developed in Ref. 24 to extract a relevant strain rate for the
impact experiment. The time-dependent biaxial extensional strain rate
in the expansion regime (Fig. 12) is averaged as

�_e ¼

ðRmax

0
r _edrðRmax

0
rdr

: (18)

Although the average strain rate (Fig. 12) does not vary signifi-
cantly with sample concentration (_eMean ¼ 2256 35 s�1), in the fol-
lowing we use the computed average strain rate (_e ) for each
concentration.

We report in Fig. 13 the variation of the normalized effective
biaxial extensional viscosity, geffB =g

0
B, of EHUT supramolecular poly-

mers as a function of the effective Weissenberg number, Wieff. The lat-
ter is defined as Wieff ¼ s0 _e , where s0 is the relaxation time obtained
from linear shear rheology measurements (Fig. 7) and _e is computed
using Eq. (18) (Fig. 12).

On the same plot, we report previous experimental data for nor-
malized biaxial extensional thinning viscosities measured for different
viscoelastic fluids using different setups.37,38 We also report polyethylene
oxide (PEO) solutions data impacted under cold Leidenfrost conditions
from our previous work.24 The EHUT experimental data follow remark-
ably well the experimental results reported in the literature for stationary
biaxial extensional deformation flows of different systems (surfactant
wormlike micelles in Ref. 37, polystyrene solutions in Ref. 38, and PEO
solutions in Ref. 24) At low Weissenberg numbers (Wi ¼ _es0 < 1), the
biaxial extensional viscosity is rate independent and reaches the
Newtonian limit: gB ¼ g0B ¼ 6g0. By contrast, when Wi> 1, the biaxial
extensional viscosity decreases with the strain rate as gB � 6g0ð_es0Þ�0:5

FIG. 11. Normalized maximum expansion factor for drops of Newtonian fluids
impacting a surface covered with liquid nitrogen as a function of Ohnesorge number
based on gB0 (green symbols), together with that of EHUT samples (red squares)
impacting a small target as a function of an effective Ohnesorge number based on
an effective biaxial extensional viscosity geffB chosen to collapse on the two sets of
data in the viscous regime. The thin continuous line is the best fit with Eq. (17), and
the dash lines show error bars on the fitting parameter b.

FIG. 12. (a) Evolution of the biaxial extensional strain rate as a function of the radius of the sheet during its expansion for EHUT samples with different concentrations, as indi-
cated in the legend. (b) Average strain rate calculated according to Eq. (18) as a function of concentration. Error bars represent the standard deviation of three different
experiments.
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with a thinning exponent of�0.5 as validated by theoretical predictions
in the framework of the classical tube-based model.67

c. Comparison between shear and biaxial extensional viscous
dissipation. After assessing geffS and validating the rheological origin of
geffB , we can now compute and compare the two viscous dissipation
processes for the supramolecular polymers. In order to account for the
rate-dependent viscosity in the shear dissipation energy of non-
Newtonian fluids, we have replaced, in Eqs. (6) and (8), gS by geffS . On
the other hand, we replaced, in Eq. (9), gB by geffB , to evaluate the biax-
ial extensional viscous energy.

Results are reported in Fig. 6. The dissipation energies have been
normalized by the initial kinetic energy of the drop EK ¼ 1

2mv20 and
plotted as a function of the zero-shear-rate Ohnesorge number. We
observe that the biaxial extensional viscous dissipation energy is larger by
two orders of magnitude than the shear dissipation energy (for both lim-
its in the calculation of the shear dissipation energy) despite the fact that
the zero-shear viscosity of the less concentrated complex fluid sample
(about 10Pa s) is two orders of magnitude larger than the more viscous
Newtonian samples we have investigated (about 0.2Pa s). Note that in
the same experimental conditions, a Newtonian viscous sample with a
viscosity of 10Pa s will not expand outside of the target after impact.

IV. CONCLUSIONS

Drop impact experiments on a small solid target have been per-
formed with Newtonian fluids and solutions of entangled supramolec-
ular polymers as rheo-thinning viscoelastic fluids. Upon impact on the
surface, a drop expands into a sheet. A part of the expanding sheet is
always at intimate contact with the target, while the rest of the sheet
freely expands in the air. We have measured the maximum expansion
of sheets for the two classes of fluids. We have quantitatively assessed
the energy dissipation due to shear and biaxial extensional deforma-
tions, and have highlighted the distinctive roles of shear and biaxial
extensional viscosities. We have shown that the expansion process is
controlled by a combination of shear (on the target) and biaxial exten-
sional (in the air) deformations. For Newtonian fluids, the two sources
of dissipation remain of the same order of magnitude. In sharp

contrast to the findings for Newtonian fluids, for the rheo-thinning
viscoelastic fluids, the dominant source of viscous dissipation is the
biaxial extensional deformation during the sheet expansion, and con-
sequently, the biaxial thinning extensional viscosity is found to control
the maximum expansion of the sheets. The physical reason is that the
thinning behavior of the fluid strongly depends on the flow type, since
nonlinear viscosities scale differently with the relevant deformation
rate. In other words, polymeric fluids exhibit a different thinning
behavior in shear and in biaxial extension, justifying the distinction we
made between the two viscous dissipation modes. On the contrary, for
Newtonian fluids, both viscosities are proportional to each other, and
thus, the distinction of the nature of the viscous dissipation is less
important. We have also shown that the ratio between the two dissipa-
tion modes strongly depends on the size of the target. It would there-
fore be interesting to study the contribution of the shear dissipation at
different drops to target ratios. This will be the task of future work.
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